精英家教网 > 初中数学 > 题目详情
已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC、BD交于精英家教网点E.
(1)求证:△ABE∽△DBC;
(2)已知BC=
5
2
,CD=
5
2
,求sin∠AEB的值;
(3)在(2)的条件下,求弦AB的长.
分析:(1)在△ABE与△DBC中,有∠ABE=∠DBC,∠BAE=∠BDC=90°,根据相似三角形的判定,它们相似;
(2)由△ABE∽△DBC,可知∠AEB=∠DCB,在Rt△DCB中,先由勾股定理求出BD的值,再根据正弦的定义求出sin∠DCB,得出sin∠AEB的值;
(3)求弦AB的长,sin∠AEB的值已求,求出BE的值即可,可以通过求BD、ED得出.
解答:(1)证明:∵BC为半圆的直径,
∴∠BAE=∠BDC=90°.
∵D是弧AC的中点,
∴∠ABE=∠DBC.
∴△ABE∽△DBC.

(2)解:在RT△DCB中,
∵∠BDC=90°,BC=
5
2
,CD=
5
2

∴BD=
5

∴sin∠DCB=BD:BC=
2
5
5

∵△ABE∽△DBC,
∴∠AEB=∠DCB.
∴sin∠AEB=
2
5
5


(3)解:∵∠AEB=∠DEC,
∴sin∠DEC=
2
5
5

∴EC=1.25,DE=
5
4
,BD=
5

BE=BD-DE=
3
5
4
,AB=
3
5
4
×sin∠AEB=1.5.
点评:本题考查了相似三角形的判断,同弧所对的圆周角相等、直径所对的圆周角为直角及解三角函数的知识,本题是一道较难的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=
12
x2-3x+c
交x轴正半轴于A、B两点,交y轴于C点,过A、精英家教网B、C三点作⊙D.若⊙D与y轴相切.
(1)求c的值;
(2)连接AC、BC,设∠ACB=α,求tanα;
(3)设抛物线顶点为P,判断直线PA与⊙D的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直角坐标系xoy中,以x轴的负半轴上一点H为圆心作⊙H与x轴交于A、B两点,与y轴交于C、D两点.以C为圆心、OC为半径作⊙C与⊙H交于F、F两点,与y轴交于O、Q两点.直线EF与AC、BC、y轴分别于M、N、G三点.直线y=
34
x+3
经过A、C两点.
(1)求tan∠CNM的值;
(2)连接OM、ON,问:四边形CMON是怎样的四边形?请说明理由.
(3)如图,R是⊙C中弧EQ上的一动点(不与E点重合),过R作⊙C的切线RT,若RT与⊙H相交于S、T不同两点.问:CS•CT的值是否发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•闵行区二模)已知:如图,抛物线y=-x2+bx+c与x轴的负半轴相交于点A,与y轴相交于点B(0,3),且∠OAB的余切值为
13

(1)求该抛物线的表达式,并写出顶点D的坐标;
(2)设该抛物线的对称轴为直线l,点B关于直线l的对称点为C,BC与直线l相交于点E.点P在直线l上,如果点D是△PBC的重心,求点P的坐标;
(3)在(2)的条件下,将(1)所求得的抛物线沿y轴向上或向下平移后顶点为点P,写出平移后抛物线的表达式.点M在平移后的抛物线上,且△MPD的面积等于△BPD的面积的2倍,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=
3
,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2012C2012,则m=
2
2
.点C2012的坐标是
(-22013,0)
(-22013,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•封开县一模)已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0).
(1)求点C的坐标;
(2)求过A、B、C三点的抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.

查看答案和解析>>

同步练习册答案