精英家教网 > 初中数学 > 题目详情
.如图,在中,的内切圆,点斜边的中点,则       .
2.

试题分析:过O点作OE⊥AB OF⊥AC OG⊥BC,
∴∠OGC=∠OFC=∠OED=90°,
∵∠C="90°,AC=6" BC=8,
∴AB=10
∵⊙O为△ABC的内切圆,
∴AF="AE,CF=CG" (切线长相等)
∵∠C=90°,
∴四边形OFCG是矩形,
∵OG=OF,
∴四边形OFCG是正方形,
设OF=x,则CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,
∴6-x+8-x=10,
∴OF=2,
∴AE=4,
∵点D是斜边AB的中点,
∴AD=5,
∴DE=AD-AE=1,
∴tan∠ODA=   =2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,CD⊥AB,垂足为D,AC=20,BC=15.动点P从A开始,以每秒2个单位长的速度沿AB方向向终点B运动,过点P分别作AC、BC边的垂线,垂足为E、F.

(1)求AB与CD的长;
(2)当矩形PECF的面积最大时,求点P运动的时间t;
(3)以点C为圆心,r为半径画圆,若圆C与斜边AB有且只有一个公共点时,求r的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M.

(1)求证:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).

(1)画出△AOB绕点O逆时针旋转90°后得到的△A1OB1
(2)填空:点A1的坐标为               .
(3)求出在旋转过程中,线段OB扫过的扇形面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是(  )
A.50°B.40°C.30°D.25°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,以正方形ABCD的顶点D为圆心画圆,分别交AD.CD两边于点E.F,若∠ABE=15°,BE=2,则扇形DEF的面积是________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是⊙O的内接三角形,O为圆心,OD⊥AB,垂足为D,OE⊥AC,垂足为E,若DE=3,则BC=        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知两圆的半径是方程x2-7x+12=0的两根,圆心距为8,那么这两个圆的位置关系是
A.内切B.外离C.相交D.外切

查看答案和解析>>

同步练习册答案