在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形
1.如图1, E是AB的中点,连结CE并延长交AD于F.
求证:①△AEF≌△BEC;
② 四边形BCFD是平行四边形;
2.如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
1.① 在△ABC中,∠ACB=90°,∠CAB=30°,
∴ ∠ABC=60°.
在等边△ABD中,∠BAD=60°, ∴ ∠BAD=∠ABC=60°.
∵ E为AB的中点,∴ AE=BE.
又∵ ∠AEF=∠BEC , ∴ △AEF≌△BEC 3分
② 在△ABC中,∠ACB=90°,E为AB的中点
∴ CE=AB,BE=
AB,∴ ∠BCE=∠EBC=60°.
又∵ △AEF≌△BEC, ∴ ∠AFE=∠BCE=60° .
又∵ ∠D=60°, ∴ ∠AFE=∠D=60° ∴ FC∥BD
又∵ ∠BAD=∠ABC=60°,∴ AD∥BC,即FD∥BC
∴ 四边形BCFD是平行四边形.
2.
解析:① 在△ABC中,∠ACB=90°,∠CAB=30°,
∴ ∠ABC=60°.
在等边△ABD中,∠BAD=60°, ∴ ∠BAD=∠ABC=60°.
∵ E为AB的中点,∴ AE=BE.
又∵ ∠AEF=∠BEC , ∴ △AEF≌△BEC 3分
② 在△ABC中,∠ACB=90°,E为AB的中点
∴ CE=AB,BE=
AB,∴ ∠BCE=∠EBC=60°.
又∵ △AEF≌△BEC, ∴ ∠AFE=∠BCE=60° .
又∵ ∠D=60°, ∴ ∠AFE=∠D=60° ∴ FC∥BD
又∵ ∠BAD=∠ABC=60°,∴ AD∥BC,即FD∥BC
∴ 四边形BCFD是平行四边形.
(2)∵∠BAD=60°,∠CAB=30° ∴∠CAH=90°
在Rt△ABC中,∠CAB=30°,设BC =a
∴ AB=2BC=2a,∴ AD=AB=2a.
设AH = x ,则 HC=HD=AD-AH=2a-x.
在Rt△ABC中,AC2=(2a) 2-a2=3a2.
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a-x) 2.
解得 x=a,即AH=
a.
∴ HC=2a-x=2a-a=
a
科目:初中数学 来源: 题型:
2 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
4 | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com