精英家教网 > 初中数学 > 题目详情

某商店销售一种商品,每件的进价为2.5元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大?

即当每件商品降价4.25元,即售价为13.5﹣4.25=9.25时,可取得最大利润9112.5元.

解析试题分析:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5﹣x)元了.单个的商品的利润是(13.5﹣x﹣2.5),这时商品的销售量是(500+200x),总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.
试题解析:设每件商品降价x元,
商品的售价就是(13.5﹣x)元,单个的商品的利润是(13.5﹣x﹣2.5)元,
这时商品的销售量是(500+200x)件.
设总利润为y元,
则y=(13.5﹣x﹣2.5)(500+200x)=﹣200x2+1700x+5500,
∵﹣200<0,
∴y有最大值;
∴当x=﹣=4.25时,
y最大值==9112.5,
即当每件商品降价4.25元,即售价为13.5﹣4.25=9.25时,可取得最大利润9112.5元.
考点:二次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

二次函数的部分图像如图所示,若关于x的一元二次方程的一个解为,则另一个解=        

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是     

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t=    时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=2x2-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.
(1)写出以A,B,C为顶点的三角形面积;
(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P、N的坐标;
(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线与x轴交于点A,与y轴交于点C,抛物线经过点A和点C,对称轴为直线l:,该抛物线与x轴的另一个交点为B.
(1)求此抛物线的解析式;
(2)点P在直线l上,求出使△PAC的周长最小的点P的坐标;
(3)点M在此抛物线上,点N在y轴上,以A、B、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知在平面直角坐标系xOy中,抛物线与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,-3),且OA=2OC.
(1)求这条抛物线的表达式及顶点M的坐标;
(2)求的值;
(3)如果点D在这条抛物线的对称轴上,且∠CAD=45º,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(-1,0),E(0,3).
(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=-x2+bx+c与x轴交于点A(1,0)、C,交y轴于点B,对称轴x=-1与x轴交于点D.
(1)求该抛物线的解析式和B、C点的坐标;
(2)设点P(x,y)是第二象限内该抛物线上的一个动点,△PBD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;

(3)点G在x轴负半轴上,且∠GAB=∠GBA,求G的坐标;
(4)若此抛物线上有一点Q,满足∠QCA=∠ABO,若存在,求直线QC的解析式;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案