【题目】如图,正方形中,,E为的中点,将沿翻折得到,延长交于,,垂足为,连接.以下结论:平分;;;其中正确的个数是( )
A.B.C.D.
【答案】C
【解析】
由正方形的性质以及折叠的性质可得∠EBF=∠EFB,根据可得∠EBF=∠BFH,进而得出∠EFB=∠BFH,即可判断①,通过∠AED+∠FED=∠EBF+∠EFB得到∠AED=∠EBF=∠EFB=∠BFH即可判断②,通过折叠及正方形的性质得到Rt△DFG≌Rt△DCG(HL),设FG=CG=x,在Rt△BEG中运用勾股定理解出x,即可得到EG的长度,从而求出,即可判断③,由△FGH∽△EGB得到FH的长度即可判断④.
解:∵正方形中,AB=6,E为AB的中点,
∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°,
∵△ADE沿DE翻折得到△FDE
∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°,
∴BE=EF=3,∠DFG=∠C=90°
∴∠EBF=∠EFB,
又∵FH⊥BC,
∴FH∥AB
∴∠EBF=∠BFH
∴∠EFB=∠BFH
∴FB平分∠EFH,故①正确;
∵∠AED+∠FED=∠EBF+∠EFB
∴∠AED=∠EBF=∠EFB=∠BFH
又∵∠A=∠FHB=90°,
∴,故②正确;
∵AD=DF=DC,∠DFG=∠C=90°,DG=DG
∴Rt△DFG≌Rt△DCG(HL)
∴FG=CG,
设FG=CG=x,则EG=3+x,BG=6-x,
在Rt△BEG中,由勾股定理得:,
解得:x=2,
∴EG=5,
∴,故③错误;
∵FH⊥BC,
∴△FGH∽△EGB,
∴,即
∴,故④正确;
故答案为:C.
科目:初中数学 来源: 题型:
【题目】已知抛物线C:y=(x+2)[t(x+1)-(x+3)],其中-7≤t≤-2,且无论t 取任何符合条件的实数,点A,P 都在抛物线C 上.
(1)当t=-5时,求抛物线C 的对称轴;
(2)当-60≤n≤-30 时,判断点(1,n)是否在抛物线C上, 并说明理由;
(3)如图,若点A在x轴上,过点A作线段AP的垂线交y轴于点B,交抛物线C于点D,当点D的纵坐标为m+时,求S△PAD的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】参与两个数学活动,再回答问题:
活动:观察下列两个两位数的积两个乘数的十位上的数都是9,个位上的数的和等于,猜想其中哪个积最大?
,,,,,,,,.
活动:观察下列两个三位数的积两个乘数的百位上的数都是9,十位上的数与个位上的数组成的数的和等于,猜想其中哪个积最大?
,,,,,,.
分别写出在活动、中你所猜想的是哪个算式的积最大?
对于活动,请用二次函数的知识证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
在数学活动课上,老师给出如下问题,让同学们展开探究活动:
[问题情境]
如图①,在中,,点为上一点,将线段绕点逆时针旋转,得到的对应线段为,过点作,交于点,请你根据上述条件,提出恰当的数学问题并解答.
[解决问题]
下面是学习小组提出的三个问题,请你解答这些问题:
(1)“兴趣”组提出的问题是:求证:;
(2)“实践”小组提出的问题是:如图②,若将沿的垂直平分线对折,得到,连接,则线段与有怎样的数量关系?请说明理由;
(3)“奋进”小组在“实践”小组探究的基础上,提出了如下问题:延长与交于点,连接,求证:四边形是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.
(1)t为何值时,△CPQ的面积等于△ABC面积的?
(2)运动几秒时,△CPQ与△CBA相似?
(3)在运动过程中,PQ的长度能否为1cm?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(1,2),B(3,1)(每个方格的边长均为1个单位长度).
(1)将△OAB向右平移1个单位后得到△O1A1B1,请画出△O1A1B1;
(2)请以O为位似中心画出△O1A1B1的位似图形,使它与△O1A1B1的相似比为2:1;
(3)点P(a,b)为△OAB内一点,请直接写出位似变换后的对应点P′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.
(1)求证:AG=BG;
(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com