精英家教网 > 初中数学 > 题目详情
如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于(      )

A.        B.      C.    B.
B

试题分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.
解:在△OPA中,当∠OPA取最大值时,OA取最大值,
∴PA取最小值,
又∵OA、OP是定值,
∴PA⊥OA时,PA取最小值;
在直角三角形OPA中,有
所以,
点评:解答本题的关键是找出∠OPA取最大值时,O、A、P三点之间的关系,从而构成几何模型求解。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是轴正半轴上一动点(OD>1),连结BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图2中,过点M作MG⊥轴于点G,连结DN,若四边形DMGN为损矩形,求D点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标中,直线为常数且≠0),分别交轴,轴于点、⊙的半径为个单位长度,如图,若点轴正半轴上,点轴的正半轴上,且

(1)求的值。
(2)若=4,点P为直线上的一个动点过点作⊙的切线 切点分别为。当时,求点的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º.

(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB是⊙O的直径,CD是弦,AB⊥CD于点E,若AB=10,CD = 6,则BE的长是(   )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.

(1)求证:PC是⊙O的切线.
(2)若AF=1,OA=,求PC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A、B是⊙O上两点,AB=12,点P是⊙O上的动点(P与A,B不重合)连结AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=      。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

半径为6cm的圆,120°的圆心角所对的弧长是       cm .(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是(     )

A.AE > BE   B.  C.∠AEC=2∠D      D.∠B=∠C.

查看答案和解析>>

同步练习册答案