精英家教网 > 初中数学 > 题目详情
如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点,精英家教网且DE⊥DF,若BE=8,CF=6.
(1)求证:△AED≌△CFD;
(2)求△DEF的面积.
分析:(1)由△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,可得:AD=DC,∠EAD=∠C=45°,AD⊥BC即∠CDF+∠ADF=90°,又DE⊥DF,可得:∠EDA+∠ADF=90°,故∠EDA=∠CDF,从而可证:△AED≌△CFD;
(2)由(1)知:AE=CF,AF=BC,DE=DF,即△EDF为等腰直角三角形,在Rt△AEF中,运用勾股定理可将EF的值求出,进而可求出DE、DF的值,代入S△EDF=
1
2
DE2进行求解.
解答:(1)证明:∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF
在△AED与△CFD中,
∠EDA=∠CDF
AD=CD
∠EAD=∠C

∴△AED≌△CFD(ASA).

(2)解:由(1)知:AE=CF=6,同理AF=BE=8.
∵∠EAF=90°,
∴EF2=AE2+AF2=62+82=100.
∴EF=10,
又∵由(1)知:△AED≌△CFD,
∴DE=DF,
∴△DEF为等腰直角三角形,DE2+DF2=EF2=100,
∴DE=DF=5
2

∴S△DEF=
1
2
×(5
2
)
2
=25.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案