精英家教网 > 初中数学 > 题目详情
如图所示,Rt△ABC在第一象限,∠BAC=90°,AB=AC=2,点A在直线y=x上,其中点A的横坐标为1,且ABx轴,ACy轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是______.
根据题意可知点A的坐标为(1,1)
∵∠BAC=90°,AB=AC=2
∴点B,C关于直线y=x对称
∴点B的坐标为(3,1),点C的坐标为(1,3)
∴中点的横坐标为
3+1
2
=2,纵坐标为
1+3
2

∴线段BC的中点坐标为(2,2),
∵双曲线y=
k
x
(k≠0)与△ABC有交点
∴过A点的双曲线k=1,过B,C中点的双曲线k=4
即1≤k≤4.
故答案为:1≤k≤4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,某个反比例函数的图象经过点P,则它的解析式为(  )
A.y=
1
x
(x>0)
B.y=-
1
x
(x>0)
C.y=
1
x
(x<0)
D.y=-
1
x
(x<0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O为原点,A(4,12)为双曲线y=
k
x
(x>0)上的一点.
(1)求k的值;
(2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为
1
4
,试求点P的坐标;
(3)分别过双曲线上的两点P1、P2,作P1B1⊥x轴于B1,P2B2⊥x轴于B2,连接OP1、OP2.设Rt△OP1B1、Rt△OP2B2的周长分别为l1、l2,内切圆的半径分别为r1、r2,若
l1
l2
=2
,试求
r1
r2
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A、B是双曲线y=
k
x
(k>0)上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=9.则k的值为(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,在平面直角坐标系中,反比例函数y=
k
x
(k≠0)的图象与一次函数y=x+b的图象交于A(-1,b-1)、B(-5,b-5)两点.
(1)求反比例函数与一次函数的解析式;
(2)设抛物线y=-x2+b′x+c(c>0)的顶点P在直线AB上,且PA:PB=1:3,求抛物线的解析式;
(3)把以上函数图象同步向右平移,使直线AB与两坐标轴所围成的三角形的面积等于2,求平移后的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
8
x
的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1.
(1)设矩形OABC的对角线交于点E,求出E点的坐标;
(2)若直线y=2x+m平分矩形OABC面积,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A与点B(-3,2)关于y轴对称,反比例函数y=
k
x
与一次函数y=mx+b的图象都经过点A,且点C(2,0)在一次函数y=mx+b的图象上.
(1)求反比例函数和一次函数的解析式;
(2)若两个函数图象的另一个交点为D,求△AOD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知汽车的油箱中存20升油,油从管道以x升/分的速度匀速往外流.
(1)写出油箱中的油都流完所需时间y(分钟)与速度x(升/分钟)的关系式;
(2)若x的最大值为4,且要求在40分钟内把油都流完,确定x的取值范围;
(3)画出满足(2)的y与x的函数图象.

查看答案和解析>>

同步练习册答案