8£®Èç¹ûÒ»ÌõÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©ÓëxÖáµÄÁ½¸ö½»µãΪA£¬B£¨µãAÔÚµãBµÄ×ó²à£©£¬¶¥µãΪP£¬Á¬½ÓPA£¬PB£¬ÄÇô³Æ¡÷PABΪÕâÌõÅ×ÎïÏߵġ°Å×ÎïÏßÈý½ÇÐΡ±£®
£¨1£©Çëд³ö¡°Å×ÎïÏßÈý½ÇÐΡ±ÊǵÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬Å×ÎïÏߵıí´ïʽ£¨Ð´³öÒ»¸ö¼´¿É£©y=-x2+1£»
£¨2£©ÈôÅ×ÎïÏßy=-x2+bx£¨b£¾0£©µÄ¡°Å×ÎïÏßÈý½ÇÐΡ±ÊǵȱßÈý½ÇÐΣ¬ÇóbµÄÖµ£»
£¨3£©Èô¡÷PABÊÇÅ×ÎïÏßy=-x2+cµÄ¡°Å×ÎïÏßÈý½ÇÐΡ±£¬ÊÇ·ñ´æÔÚÒÔµãAΪ¶Ô³ÆÖÐÐĵľØÐÎPBCD£¿Èô´æÔÚ£¬Çó³ö¹ýO£¬C£¬DÈýµãµÄÅ×ÎïÏߵıí´ïʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©È¡A£¨-1£¬0£©£¬B£¨1£¬0£©£¬C£¨0£¬1£©Èýµã£¬Çó³ö¹ýA¡¢B¡¢CÈýµãµÄÅ×ÎïÏß¼´¿É£®
£¨2£©Èçͼ1ÖУ¬¹ýµãP×÷PH¡ÍABÓÚH£¬¡÷PABÊǵȱßÈý½ÇÐΣ¬¸ù¾ÝPH=$\sqrt{3}$AH£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
£¨3£©Èçͼ2ÖУ¬×÷¡÷ACDÓë¡÷APB¹ØÓÚµãAÖÐÐĶԳƣ¬ÔòËıßÐÎPBCDΪƽÐÐËıßÐΣ¬µ±PC=BDʱ£¬Æ½ÐÐËıßÐÎPBCDΪ¾ØÐΣ¬¼´PA=AB£¬ÍƳö¡÷APBΪµÈ±ßÈý½ÇÐΣ¬ÓÉ´ËÇó³öD¡¢C×ø±ê¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©´ð°¸²»Î¨Ò»£¬µ±A£¨-1£¬0£©£¬B£¨1£¬0£©£¬C£¨0£¬1£©Ê±£¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬´Ëʱ¾­¹ýA¡¢B¡¢CÈýµãµÄÅ×ÎïÏßΪy=-x2+1£¬
¹Ê´ð°¸Îªy=-x2+1£®
£¨2£©¡ßÅ×ÎïÏßy=-x2+bx£¨b£¾0£©µÄ¡°Å×ÎïÏßÈý½ÇÐΡ±ÊǵȱßÖ±½ÇÈý½ÇÐΣ¬
Ó֡߸ÃÅ×ÎïÏߵĶ¥µã£¨$\frac{b}{2}$£¬$\frac{{b}^{2}}{4}$£©£¬
Èçͼ1ÖУ¬¹ýµãP×÷PH¡ÍABÓÚH£¬
¡ß¡÷PABÊǵȱßÈý½ÇÐΣ¬
¡àPH=$\sqrt{3}$AH£¬
¡à$\frac{{b}^{2}}{4}$=$\frac{\sqrt{3}b}{2}$£¬
¡àb=2$\sqrt{3}$£®
£¨3£©Èçͼ2ÖУ¬×÷¡÷ACDÓë¡÷APB¹ØÓÚµãAÖÐÐĶԳƣ¬ÔòËıßÐÎPBCDΪƽÐÐËıßÐΣ¬
µ±PC=BDʱ£¬Æ½ÐÐËıßÐÎPBCDΪ¾ØÐΣ¬
¼´PA=AB£¬
¡à¡÷APBΪµÈ±ßÈý½ÇÐΣ¬
ÓÉ£¨2£©×÷·¨¿ÉÖª£¬P£¨0£¬3£©£¬
¡àA£¨-$\sqrt{3}$£¬0£©£¬B£¨$\sqrt{3}$£¬0£©£¬
ÓÉÖÐÐĶԳÆͼÐεÄÐÔÖÊ¿ÉÖª£¬D£¨-3$\sqrt{3}$£¬0£©£¬C£¨-2$\sqrt{3}$£¬-3£©£¬
Éè¹ýO¡¢C¡¢DÈýµãµÄÅ×ÎïÏßΪy=ax2+bx£¬
Ôò$\left\{\begin{array}{l}{27a-3\sqrt{3}b=0}\\{12a-2\sqrt{3}b=-3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=\frac{3\sqrt{3}}{2}}\end{array}\right.$£¬
¡àO£¬C£¬DÈýµãµÄÅ×ÎïÏߵıí´ïʽΪ£ºy=$\frac{1}{2}$x2+$\frac{3\sqrt{3}}{2}$x£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢µÈ±ßÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢¾ØÐεÄÅж¨ºÍÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊdzä·ÖÀûÓõȱßÈý½ÇÐÎÐÔÖÊ£¬Çó³ö¹Ø¼üµãµÄ×ø±ê£¬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ñ³Ç13-1ÆøÌïÊÇÎÒ¹úº£ÉÏ×î´óºÏ×÷ÆøÌÄê²úÆøԼΪ3400000000Á¢·½Ã×£¬½«Êý¾Ý3400000000ÓÿÆѧ¼ÇÊý·¨±íʾΪ3.4¡Á109£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬¾ØÐÎABCDÖУ¬¶Ô½ÇÏßACµÄÖеãΪO£¬¹ýO×÷EF¡ÍAC£¬·Ö±ð½»AB¡¢DCÓÚE¡¢F£¬ÈôAB=4£¬BC=2£¬ÄÇôÏ߶ÎEFµÄ³¤Îª$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=-2x+10ÓëxÖᣬyÖáÏཻÓÚA£¬BÁ½µã£¬µãCµÄ×ø±êÊÇ£¨8£¬4£©£¬Á¬½ÓAC£¬BC£®
£¨1£©Çó¹ýO£¬A£¬CÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£¬²¢Åжϡ÷ABCµÄÐÎ×´£»
£¨2£©¶¯µãP´ÓµãO³ö·¢£¬ÑØOBÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãBÔ˶¯£»Í¬Ê±£¬¶¯µãQ´ÓµãB³ö·¢£¬ÑØBCÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãCÔ˶¯£®¹æ¶¨ÆäÖÐÒ»¸ö¶¯µãµ½´ï¶Ëµãʱ£¬ÁíÒ»¸ö¶¯µãÒ²Ëæֹ֮ͣÔ˶¯£®ÉèÔ˶¯Ê±¼äΪtÃ룬µ±tΪºÎֵʱ£¬PA=QA£¿
£¨3£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ£¬ÊÇ·ñ´æÔÚµãM£¬Ê¹ÒÔA£¬B£¬MΪ¶¥µãµÄÈý½ÇÐÎÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¡¶¾ÅÕÂËãÊõ¡·ÊÇÖйú´«Í³Êýѧ×îÖØÒªµÄÖø×÷£¬µì¶¨ÁËÖйú´«Í³ÊýѧµÄ»ù±¾¿ò¼Ü£®ËüµÄ´úÊý³É¾ÍÖ÷Òª°üÀ¨¿ª·ÅÊõ¡¢Õý¸ºÊõºÍ·½³ÌÊõ£®ÆäÖУ¬·½³ÌÊõÊÇ¡¶¾ÅÕÂËãÊõ¡·×î¸ßµÄÊýѧ³É¾Í£®¡¶¾ÅÕÂËãÊõ¡·ÖмÇÔØ£º¡°½ñÓй²Âò¼¦£¬È˳ö°Ë£¬Ó¯Èý£»È˳öÆߣ¬²»×ãËÄ£¬ÎÊÈËÊý¡¢¼¦¼Û¸÷¼¸ºÎ£¿¡±ÒëÎÄ£º¡°½ñÌìÓм¸¸öÈ˹²Í¬Âò¼¦£¬Ã¿È˳ö8Ç®£¬¶àÓà3Ç®£¬Ã¿È˳ö7Ç®£¬»¹È±4Ç®£®ÎÊÈËÊýÓжàÉÙÈË£¬¼¦µÄ¼ÛÇ®ÊǶàÉÙ£¿¡±ÉèÈËÊýÓÐxÈË£¬¼¦µÄ¼ÛÇ®ÊÇyÇ®£¬¿ÉÁз½³Ì×éΪ$\left\{\begin{array}{l}{y=8x-3}\\{y=7x+4}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÈçͼÊÇÒ»¸öÕý·½Ì壬ÔòËüµÄ±íÃæÕ¹¿ªÍ¼¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÒÔ¡÷ABCµÄBC±ßÉÏÒ»µãOΪԲÐÄ£¬¾­¹ýA£¬CÁ½µãÇÒÓëBC±ß½»ÓÚµãE£¬µãDΪCEµÄÏ°ëÔ²»¡µÄÖе㣬Á¬½ÓAD½»Ï߶ÎEOÓÚµãF£¬ÈôAB=BF£®
£¨1£©ÇóÖ¤£ºABÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÈôCF=4£¬DF=$\sqrt{10}$£¬Çó¡ÑOµÄ°ë¾¶r¼°sinB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ÈÈÆøÇòµÄ̽²âÆ÷ÏÔʾ£¬´ÓÈÈÆøÇòA´¦¿´Ò»¶°Â¥¶¥²¿B´¦µÄÑö½ÇΪ30¡ã£¬¿´Õⶰ¥µ×²¿C´¦µÄ¸©½ÇΪ60¡ã£¬ÈÈÆøÇòA´¦ÓëÂ¥µÄˮƽ¾àÀëΪ120m£¬ÔòÕⶰ¥µÄ¸ß¶ÈΪ£¨¡¡¡¡£©
A£®160$\sqrt{3}$mB£®120$\sqrt{3}$mC£®300mD£®160$\sqrt{2}$m

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁÐʵÊýÖУ¬ÊÇÎÞÀíÊýµÄΪ£¨¡¡¡¡£©
A£®-4B£®0.101001C£®$\frac{1}{3}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸