精英家教网 > 初中数学 > 题目详情
13.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.

(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.

分析 (1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;
(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,即可得出结果.

解答 (1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:
∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,
∴∠ABC=∠CAD,
∵AE为⊙O的直径,
∴∠ADE=90°,
∴∠EAD=90°-∠AED,
∵∠AED=∠ABD,
∴∠AED=∠ABC=∠CAD,
∴∠EAD=90°-∠CAD,
即∠EAD+∠CAD=90°,
∴EA⊥AC,
∴AC是⊙O的切线;
(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∴∠ABC+∠ADB=90°,
∵∠ABC:∠ACB:∠ADB=1:2:3,
∴4∠ABC=90°,
∴∠ABC=22.5°,
由(1)知:∠ABC=∠CAD,
∴∠CAD=22.5°.

点评 本题考查了切线的判定、圆周角定理、角的互余关系;熟练掌握切线的判定方法,由圆周角定理得出直角是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.证明:三角形中位线定理.
已知:如图,DE是△ABC的中位线.
求证:DE∥BC,DE=$\frac{1}{2}$BC.
证明:略.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=70°,则∠B的度数为(  )
A.55°B.60°C.70°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.

第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为$\frac{6\sqrt{10}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,为了测量出楼房AC的高度,从距离楼底C处60$\sqrt{3}$米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:$\sqrt{3}$的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈$\frac{4}{3}$,计算结果用根号表示,不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读下列材料并回答问题:
材料1:如果一个三角形的三边长分别为a,b,c,记$p=\frac{a+b+c}{2}$,那么三角形的面积为$S=\sqrt{p(p-a)(p-b)(p-c)}$.    ①
古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.
我国南宋数学家秦九韶(约1202--约1261),曾提出利用三角形的三边求面积的秦九韶公式:$S=\sqrt{\frac{1}{4}[{{a^2}{b^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{2}})}^2}}]}$.     ②
下面我们对公式②进行变形:$\sqrt{\frac{1}{4}[{{a^2}{b^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{2}})}^2}}]}=\sqrt{{{({\frac{1}{2}ab})}^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{4}})}^2}}$=$\sqrt{({\frac{1}{2}ab+\frac{{{a^2}+{b^2}-{c^2}}}{4}})({\frac{1}{2}ab-\frac{{{a^2}+{b^2}-{c^2}}}{4}})}$=$\sqrt{\frac{{2ab+{a^2}+{b^2}-{c^2}}}{4}•\frac{{2ab-{a^2}-{b^2}+{c^2}}}{4}}$=$\sqrt{\frac{{{{(a+b)}^2}-{c^2}}}{4}•\frac{{{c^2}-{{(a-b)}^2}}}{4}}$=$\sqrt{\frac{a+b+c}{2}•\frac{a+b-c}{2}•\frac{a+c-b}{2}•\frac{b+c-a}{2}}$=$\sqrt{p(p-a)(p-b)(p-c)}$.
这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦--秦九韶公式.
问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.
(1)求△ABC的面积;
(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(-1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.
(1)求此抛物线对应的函数表达式及点C的坐标;
(2)若抛物线上存在点M,使得△BCM的面积为$\frac{7}{2}$,求出点M的坐标;
(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:($\frac{1}{3}$)-1-$\sqrt{27}$+tan60°+|3-2$\sqrt{3}$|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知数轴甲上有A、B、C三点,分别表示-30、-20、0,动点M从点A出发,以每秒1个单位的速度向终点C移动,设点M移动的时间为t秒,点M在数轴甲上表示的数为m.
(1)用含有t的代数式表示m=t-30(0≤t≤30).
(2)另有一个数轴乙,数轴乙上有D、E两点,分别表示-60、0.当点M运动到点B时,数轴乙上的动点N从点D出发,以点M速度的4倍向点E运动,当N到达点E后,再立即以同样的速度返回,当点M到达点C时,M、N两点运动停止,设点N在数轴乙上表示数n.
①当点N从点D出发,向点E运动时,用含有t的代数式表示n=4t-100(10≤t≤25);当点N到达点E后返回时,用含有t的代数式表示n=100-4t(25<t).
 ②求当点N从开始运动到运动停止时,m-n的值(用含t的代数式表示)
 ③求当t为何值时,m=n.

查看答案和解析>>

同步练习册答案