精英家教网 > 初中数学 > 题目详情
16.直线y=-$\frac{4}{3}$x+4与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.
①请直接写出点C、点D的坐标,并求出m的值;
②点P(0,t)是线段OB上的一个动点(点P不与0、B重合),
经过点P且平行于x轴的直线交AB于M、交CE于N.设线段MN的长度为d,求d与t之间的函数关系式(不要求写自变量的取值范围);
③当t=2时,线段MN,BC,AE之间有什么关系?(写出过程)

分析 (1)由直线的解析式可求出A和B点的坐标,再根据菱形的性质即可求出点C、点D的坐标,把点C的坐标代入直线y=x+m即可求出m的值;
(2)设点M的坐标为(xM,t),点N的坐标为(xN,t),首先求出xM=-$\frac{3}{4}$t+3,再求出xN=t-9,进而得到d=xM-xN=-$\frac{3}{2}$t+3-(t-9)=-$\frac{7}{4}$t+12;
(3)先求出点P的坐标,进而得出点P是OB中点,即可得出MN是梯形ABCE的中位线即可得出结论.

解答 解:(1)∵直线y=-$\frac{4}{3}$x+4与x轴交于点A,与y轴交于点B,
∴点A的坐标为(3,0)点B的坐标为(0,4),
∵四边形ABCD是菱形,
∵直线y=x+m经过点C,
∴m=9,
(2)∵MN 经过点P(0,t)且平行于x轴,
∴可设点M的坐标为(xM,t),点N的坐标为(xN,t),
∵点M在直线AB上,
直线AB的解析式为y=-$\frac{4}{3}$x+4,
∴t=-$\frac{4}{3}$xM+4,得xM=-$\frac{3}{4}$t+3,
同理点N在直线CE上,直线CE的解析式为y=x+9,
∴t=xN+9,得xN=t-9,
∵MN∥x轴且线段MN的长度为d,
∴d=xM-xN=-$\frac{3}{4}$t+3-(t-9)=-$\frac{7}{4}$t+12(0≤t≤4)
(3)MN=$\frac{1}{2}$(BC+AE).
理由:当t=2时,P(0,2),
∴OP=2,
∵OB=4,
∴点P是OB中点,
∵MN∥x轴,
∴MN是梯形ABCE的中位线,
∴MN=$\frac{1}{2}$(BC+AE).

点评 此题是一次函数综合题,主要考查了菱形的性质,梯形的中位线,待定系数法,解本题的关键得出d与t之间的函数关系式,是一道比较简单的中考常考题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,BD、CE分别是△ABC的边AC和边AB上的高,如果BD=CE.试证明AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.综合与探究
如图,在平面直角坐标系xOy中,抛物线W的函数表达式为y=-x2+2x+3,抛物线W与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,它的顶点为D,直线l经过A、C两点.
(1)求点A、B、C、D的坐标.
(2)将直线l向下平移m个单位,对应的直线为l′.
       ①若直线l′与x轴的正半轴交于点E,与y轴的正半轴交于点F,△AEF的面积为S,求S关于m的函数关系式,并写出自变量m的取值范围;
      ②求m的值为多少时,S的值最大?最大值为多少?
(3)若将抛物线W也向下平移m单位,再向右平移1个单位,使平移后得到的二次函数图象的顶点P落在△AOC的内部(不包括△AOC的边界),请直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在△ABC中,点D、E分别在边AC、AB上,BD、CE交于点F,CE=BE,且∠BEC+∠BDC=180°
(1)如图1,当∠BEC=120°时,与AC相等的线段是BF;(请直接写出答案)
(2)如图2,当∠BEC≠120°时,(1)中的结论是否成立,若成立请证明,若不成立,请说明理由;
(3)如图3,点D、E分别在边CA、BA的延长线上时,BD、CE交于点F,若将条件CE=BE改为“CE=kBE”,且BF=m,EF=n,∠BFE=α,其它条件不变,求AE的长(用含k,m,n,α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:如图,在平面直角坐标系xOy中,抛物线y=ax2-4ax+1与x轴的正半轴交于点A和点B,与y轴交于点C,且OB=3OC,点P是第一象限内的点,连接BC,△PBC是以BC为斜边的等腰直角三角形.
(1)求这个抛物线的表达式;
(2)求点P的坐标;
(3)点Q在x轴上,若以Q、O、P为顶点的三角形与以点C、A、B为顶点的三角形相似,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.四边形ABCD中,AB=BC,∠ABC=90°,点E在BD上,点F在射线CD上,且AE=EF,∠AEF=90°
(1)如图①,若∠ABE=∠AEB,AG⊥BD,垂足为G,求证:BG=GE;
(2)在(1)的条件下,猜想线段CD,DF的数量关系,并证明你的猜想;
(3)如图②,若∠ABE=a,∠AEB=135°,CD=a,求DF的长(用含a,α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.一列单项式-x2,3x3,-5x4,7x5.…,按此规律排列,则第9个单项式是-17x10

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.一个圆锥形圣诞帽的母线为 30cm,侧面积为 300πcm2,则这个圣诞帽的底面半径为10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.一个不透明的口袋中,装有红球2个,白球4个,这些球除颜色不同外没有任何区别,从中任意摸出一个球,摸到红球的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案