【题目】如图,已知E是ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F,连接AC、BF,若EF=EC,试判断四边形ABFC是什么四边形,并证明.
【答案】证明见解析
【解析】试题分析:由四边形ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.
试题解析:
∵ 四边形ABCD为平行四边形,
∴ AB∥DC,
∴ ∠ ABE=∠ ECF,
又∵ E为BC的中点,
∴ BE=CE,
在△ ABE和△ FCE中,
∵,
∴ △ ABE≌△ FCE(ASA);
∴ AB=CF,
∴ 四边形ABFC是平行四边形,
∵ BE=EC,EF=EC,
∴ BE=EF=EC,
∴ △ BFC是直角三角形,
则∠ BFC=90°.
∴ 平行四边形ABFC是矩形.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=_______,△APE的面积等于8.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一件夹克衫先按成本价提高50%标价,再将标价打7折出售,结果获利30元.如果设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是( )
A.70%(1+50%)x=x-30B.70%(1+50%)x=x+30
C.70%(1+50%x)=x-30D.70%(1+50%x)=x+30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知直线l1l2,且l3和l1,l2分别交于A、B两点,点P在直线AB上
试找出之间的关系并说明理由;
当点P在A,B两点间运动时,问之间的关系是否发生变化?
如果点P在A,B两点外侧运动时,试探究之间的关系只写结论,不需要说明理由,并在备用图①、②中画出对应图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC .
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.
(1)求证:四边形BPEQ是菱形;
(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°.
(1)将图①中的三角尺绕点O顺时针旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC,则∠CON=________;
(2)将图①中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边MN恰好与射线OC平行;在第________秒时,直线ON恰好平分锐角∠AOC(直接写出结果);
(3)将图①中的三角尺绕点O顺时针旋转至图③,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com