精英家教网 > 初中数学 > 题目详情
如图已知矩形ABCD沿着BD折叠,使点C落在C?处,BC?交AD于点E,AD=8,AB=4.
(1)求证:BE=DE;
(2)求AE的长; 
(3)若过点E作EF⊥BD于F,求EF的长.
分析:(1)根据矩形的性质可知:∠ADB=∠CBD,再由折叠知∠CBD=∠EBD,即可得到∠EBD=∠EDB,证明出BE=DE;
(2)设AE=EC′=x,则DE=8-x,利用勾股定理求出x的值,即可求出AE的长;
(3)由△BFE∽△BC′D,列出比例关系即可求出EF的长.
解答:(1)证明:∵四边形ABCD是矩形,
∴∠ADB=∠CBD,
又∵∠CBD=∠EBD,
∴∠EBD=∠EDB;

(2)解:设AE=EC′=x,则DE=8-x,
在Rt△DC′E中,C′E2+C′D2=DE2,即x2+42=(8-x)2
解得x=3,即AE的长为3;

(3)解:∵EF⊥BD,
∴∠EFB=90°=∠C′,
又∵∠EBF=∠DBC′,
∴Rt△BFE∽Rt△BC′D,
EF
C′D
=
BE
BD

EF
4
=
5
4
5

解得EF=
5

∴EF的长为
5
点评:本题主要考查翻折变换的知识点,解答本题的关键是掌握矩形的性质、相似的三角形的性质以及翻折变换的知识,此题难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.

1.求AC的长

2.求∠AOB的度数

3.以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.

【小题1】求AC的长
【小题2】求∠AOB的度数
【小题3】以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题10分) (湖南湘西24,10分)如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.
(1)求AC的长.
(2)求∠AOB的度数.
(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广东省茂名市九年级下学期期中考试数学试卷(解析版) 题型:解答题

如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.

1.求AC的长

2.求∠AOB的度数

3.以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.

 

查看答案和解析>>

同步练习册答案