精英家教网 > 初中数学 > 题目详情

【题目】如图,O所在圆的圆心,∠AOB90°,点P上运动(不与点AB重合),APOB延长线于点CCDOP于点D.若OB2BC2,则PD的长是(

A.B.C.D.

【答案】B

【解析】

通过证明△OAC∽△DPC,可得,可设PD=2xCD=3x,由勾股定理,可求x的值,即可求解.

OB=2BC=2

BC=1OA=OP=2OC=OB+BC=3

OA=OP

∴∠OAC=∠OPA

∵∠OPA=∠CPD

∴∠OAC=∠CPD,且∠D=∠AOC=90°

∴△OAC∽△DPC

∴设

CD2+OD2=OC2

9x2+(2+2x)2=9

x1=x2=﹣1(不合题意舍去),

PD=2x=

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】请阅读下列材料,并完成相应的任务.

人类会作圆并且真正了解圆的性质是在2000多年前,由我国的墨子给出圆的概念:“一中同长也.”.意思说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下的定义要早100年.与圆有关的定理有很多,弦切角定理就是其中之一.

我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.

弦切角定理:弦切角的度数等于它所夹弧所对的圆周角度数.

下面是弦切角定理的部分证明过程:

证明:如图①,AB与⊙O相切于点A.当圆心O在弦AC上时,容易得到∠CAB90°,所以弦切角∠BAC的度数等于它所夹半圆所对的圆周角度数.

如图②,AB与⊙O相切于点A,当圆心O在∠BAC的内部时,过点A作直径AD交⊙O于点D,在上任取一点E,连接ECEDEA,则∠CED=∠CAD

任务:

(1)请按照上面的证明思路,写出该证明的剩余部分;

(2)如图③,AB与⊙O相切于点A.当圆心O在∠BAC的外部时,请写出弦切角定理的证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形ABCD折叠,使点ACD边上的点H重合(H不与CD重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD周长为m,△CHG周长为n,则为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0),分别以AB为圆心,大于AB的长为半径作弧,两弧交于点EF,直线EF恰好经过点D,则点D的坐标为(  )

A. 22B. 2C. 2D. +1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校王老师组织九(1)班同学开展数学活动,某天带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A的仰角为45°,斜坡与地面成60°角,CD4m,请你根据这些数据求电线杆的高AB.(结果用根号表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,对角线ACBD相交于点O,点EF分别是OBOD的中点.

1)试说明四边形AECF是平行四边形.

2)若AC8AB6.若ACAB,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,点延长线上的一点,过点的切线,切点为,过两点分别作的垂线,垂足分别为,连接

求证:(1平分

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足ACBC,当点A运动时,点C始终在函数y的图象上运动,tanCAB2,则k_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点),与轴交于点,抛物线)经过两点,为线段上一点,过点轴交抛物线于点

1)当时,

①求抛物线的关系式;

②设点的横坐标为,用含的代数式表示的长,并求当为何值时,

2)若长的最大值为16,试讨论关于的一元二次方程的解的个数与的取值范围的关系.

查看答案和解析>>

同步练习册答案