精英家教网 > 初中数学 > 题目详情

已知,点O为等边三角形ABC的内心,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.当直线m与BC平行时(如图1),易证:BE+CF=AD,

当直线m绕点O旋转到与BC不平行时,图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD、BE、CF之间又有怎样的数量关系?请写出你的猜想,不需证明.

解:图2结论:BE+CF=AD
证明:连接AO并延长交BC于点G,作GH⊥EF于点H,
由图1可得AO=2•OG
∵AD∥GH,∴△ADO∽△GHO.∴AD=2•GH
连接FG并延长交EB的延长线于点M,
△BMG≌△CFG,BM=CF,MG=FG
∵GH∥EM,∴△FHG∽△FEM.∴BE+BM=2•GH
∴BE+CF=AD
图3结论:CF-BE=AD
分析:连接AO并延长交BC于点G,作GH⊥EF于点H,由图1可得AO=2•OG,进而可以证明△ADO∽△GHO得AD=2•GH,连接FG并延长交EB的延长线于点M,即可求证△FHG∽△FEM,即可求得BE+CF=AD,即可解题.
点评:本题考查了相似三角形的传递性,考查了相似三角形对应边比值相等的性质,考查了全等三角形的判定,本题中求证△FHG∽△FEM是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知边长为5的等边三角ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012届山东胜利七中九年级中考二模数学试卷(带解析) 题型:解答题

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(湖南长沙卷)数学 题型:解答题

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(湖北黄冈卷)数学 题型:解答题

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。

(1)求点B的坐标;

(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案