精英家教网 > 初中数学 > 题目详情
(2013•十堰)如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.
(1)求证:⊙O与CB相切于点E;
(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.
分析:(1)由CA=CB,且CH垂直于AB,利用三线合一得到CH为角平分线,再由OD垂直于AC,OE垂直于CB,利用角平分线定理得到OE=OD,利用切线的判定方法即可得证;
(2)由CA=CB,CH为高,利用三线合一得到AH=BH,在直角三角形ACH中,利用勾股定理求出CH的长,由圆O过H,CH垂直于AB,得到圆O与AB相切,由(1)得到圆O与CB相切,利用切线长定理得到BE=BH,如图所示,过E作EF垂直于AB,得到EF与CH平行,得出△BEF与△BCH相似,由相似得比例,求出EF的长,由BH与EF的长,利用三角形面积公式即可求出△BEH的面积;根据EF与BE的长,利用勾股定理求出FB的长,由BH-BF求出HF的长,利用锐角三角形函数定义即可求出tan∠BHE的值.
解答:(1)证明:∵CA=CB,点O在高CH上,
∴∠ACH=∠BCH,
∵OD⊥CA,OE⊥CB,
∴OE=OD,
∴圆O与CB相切于点E;

(2)解:∵CA=CB,CH是高,
∴AH=BH=
1
2
AB=3,
∴CH=
CA2-AH2
=4,
∵点O在高CH上,圆O过点H,
∴圆O与AB相切于H点,
由(1)得圆O与CB相切于点E,
∴BE=BH=3,
如图,过E作EF⊥AB,则EF∥CH,
∴△BEF∽△BCH,
BE
BC
=
EF
CH
,即
3
5
=
EF
4

解得:EF=
12
5

∴S△BHE=
1
2
BH•EF=
1
2
×3×
12
5
=
18
5

在Rt△BEF中,BF=
BE2-EF2
=
9
5

∴HF=BH-BF=3-
9
5
=
6
5

则tan∠BHE=
EF
HF
=2.
点评:此题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握切线的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为
750
2
750
2
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当
2
≤r<2时,S的取值范围是
π
2
-1≤S<
3
-
3
π
2
-1≤S<
3
-
3

查看答案和解析>>

同步练习册答案