【题目】如图1,在矩形ABCD中,AB=6,BC=8,点E是边CD上的点,且CE=4,过点E作CD的垂线,并在垂线上截取EF=3,连接CF.将△CEF绕点C按顺时针方向旋转,记旋转角为a.
(1)问题发现
当a=0°时,AF= ,BE= ,= ;
(2)拓展探究
试判断:当0°≤a°<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△CEF旋转至A,E,F三点共线时,直接写出线段BE的长.
【答案】(1),,;(2)无变化,理由见解析;(3)BE的值为或
【解析】
(1)如图(见解析),先根据矩形的判定与性质得出DG=EF=3,AG=11,再利用勾股定理求出即可得;
(2)如图(见解析),先根据相似三角形的判定与性质得出,∠ECF=∠ACB,从而可得,∠ACF=∠BCE,再根据相似三角形的判定与性质即可得;
(3)分两种情况:E在A、F之间和点F在A、E之间,分别利用勾股定理求出AE的长,再利用线段的和差求出AF的长,然后结合(2)的结论即可求出BE的长.
(1)当a=0°时,如图,过点F作FG⊥AD于G
∵四边形ABCD是矩形
∴∠ADC=∠BCE=90°,AD=BC=8,AB=CD=6
由∠G=∠EDG=∠DEF=90°,知四边形DEFG是矩形
∴DG=EF=3,AG=11
∵CE=4,CD=6
∴FG=DE=2
在Rt△AGF中,由勾股定理得:AF=
同理可得:BE=
∴=;
(2)的大小无变化,理由如下:
如图,连接AC
∵AB=6,BC=8,EF=3,CE=4
∴,
∴=
∵∠CEF=∠ABC=90°
∴△CEF∽△CBA
∴,∠ECF=∠ACB
∴,∠ACF=∠BCE
∴△ACF∽△BCE
∴,即的大小无变化;
(3)当△CEF旋转至A,E,F三点共线时,存在两种情况:
①如图,点E在A、F之间,连接AC
Rt△ABC中,由勾股定理得:AC=10
同理可得:CF=5
由(2)知:
Rt△AEC中,由勾股定理得:AE=
∴AF=AE+EF=
∴BE=AF==;
②如图,点F在A、E之间时,连接AC
同理可得:AF=AE﹣EF=
∴BE=AF==;
综上所述,BE的值为或.
科目:初中数学 来源: 题型:
【题目】ABCD中,对角线AC、BD相交于点O,E是边AB上的一个动点(不与A、B重合),连接EO并延长,交CD于点F,连接AF,CE,下列四个结论中:
①对于动点E,四边形AECF始终是平行四边形;
②若∠ABC<90°,则至少存在一个点E,使得四边形AECF是矩形;
③若AB>AD,则至少存在一个点E,使得四边形AECF是菱形;
④若∠BAC=45°,则至少存在一个点E,使得四边形AECF是正方形.
以上所有正确说法的序号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.
(1)P的坐标 ,C的坐标 ;
(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车销售公司一位销售经理1~5月份的汽车销售统计图如下(两幅统计图均不完整);
请根据图中信息,解答下列问题:
(1)若1月的销售量是2月的销售量的倍,补全图1中销售量折线统计图;
(2)在图2中,2月的销售量所对应的扇形的圆心角大小为 ;
(3)据此估算本年度汽车销售的总量是多少?
(4)已知5月份销售的车中有辆国产车和辆合资车,国产车分别用表示,合资车分别用表示,现从这辆车中随机抽取两辆车参加公司的回馈活动,请用画树状图或列表法,求出“抽到的两辆车都是国产车”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,,,,点E为AB的中点,D为BC边上的一动点,把△ACD沿AD折叠,点C落在点F处,当△AEF为直角三角形时,CD的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多________个.(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。若DE=1,则BC的长为( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数的图象与二次函数的图象交于A,B两点(点A在点B的左侧),与这个二次函数图象的对称轴交于点C,设二次函数图象的顶点为D.
(1)求点C的坐标;
(2)若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的解析式;
(3)若,且△ACD的面积等于10,请直接写出满足条件的点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)
用的矩形瓷砖,可拼得一些长度不同但宽度均为的矩形图案.
已知长度为的所有图案如下:
(尝试操作)
在所给方格中(假设图中最小方格的边长为),尝试画出所有用的“矩形瓷砖”拼得的“长度是,但宽度均为”的矩形图案示意图.
(归纳发现)
观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.
(规律概括)
描述一下你发现的规律: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com