【题目】如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.
(1)请直接写出CM和EM的数量关系和位置关系;
(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.
【答案】(1)CM=EM,CM⊥EM,理由见解析;(2)(1)中的结论成立,理由见解析;(3)(1)中的结论成立,理由见解析.
【解析】(1)延长EM交AD于H,证明△FME≌△AMH,得到HM=EM,根据等腰直角三角形的性质可得结论;
(2)根据正方形的性质得到点A、E、C在同一条直线上,根据直角三角形斜边上的中线是斜边的一半证明即可;
(3)根据题意画出完整的图形,根据平行线分线段成比例定理、等腰三角形的性质证明即可.
(1)如图1,结论:CM=EM,CM⊥EM.
理由:∵AD∥EF,AD∥BC,
∴BC∥EF,
∴∠EFM=∠HBM,
在△FME和△BMH中,
,,
∴△FME≌△BMH,
∴HM=EM,EF=BH,
∵CD=BC,
∴CE=CH,∵∠HCE=90°,HM=EM,
∴CM=ME,CM⊥EM.
(2)如图2,连接AE,
∵四边形ABCD和四边形EDGF是正方形,
∴∠FDE=45°,∠CBD=45°,
∴点B、E、D在同一条直线上,
∵∠BCF=90°,∠BEF=90°,M为AF的中点,
∴CM=AF,EM=AF,
∴CM=ME,
∵∠EFD=45°,
∴∠EFC=135°,
∵CM=FM=ME,
∴∠MCF=∠MFC,∠MFE=∠MEF,
∴∠MCF+∠MEF=135°,
∴∠CME=360°-135°-135°=90°,
∴CM⊥ME.
(3)如图3,连接CF,MG,作MN⊥CD于N,
在△EDM和△GDM中,
,
∴△EDM≌△GDM,
∴ME=MG,∠MED=∠MGD,
∵M为BF的中点,FG∥MN∥BC,
∴GN=NC,又MN⊥CD,
∴MC=MG,
∴MD=ME,∠MCG=∠MGC,
∵∠MGC+∠MGD=180°,
∴∠MCG+∠MED=180°,
∴∠CME+∠CDE=180°,
∵∠CDE=90°,
∴∠CME=90°,
∴(1)中的结论成立.
科目:初中数学 来源: 题型:
【题目】为落实“美丽泰州”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成该改造工作.已知甲队的工作效率是乙队工作效率的倍,甲队改造720米的道路比乙队改造同样长的道路少用4天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,若需改造的道路全长2400米,改造总费用不超过195万元,则至少安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③;④∠ACM+∠ANM=∠MOB;⑤AE=MF.
其中正确结论的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB30°,点P是∠AOB内的一定点,且OP6,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.
(1)若AP,求DE的长;
(2)联结CP,若CP=EP,求AP的长;
(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线yax2bxc(a0)经过A(1,0),B(4,0),C(0,2)三点.
(1)求这条抛物线和直线BC的解析式;
(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与COB相似?若存在,试求出点E的坐标;若不存在,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.
(1)直接写出点D(m,n)所有的特征线 ;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于y轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com