精英家教网 > 初中数学 > 题目详情
精英家教网某校的校园内有一块尺寸如图所示的三角形空地,现计划将这块空地建成一个花园.已知每平方米的造价为30元.则学校建这个花园需要投资(
2
≈1.414
3≈1.732
)(  )
A、7794元
B、7820元
C、7822元
D、7921元
分析:作BH⊥CA于H,根据邻补角得到∠BAH=60°,在Rt△BAH中,根据∠BAH的正弦可计算出BH=10
3
,再计算S△ABC=150
3
≈259.8(每平方米),然后用面积乘以单价即可得到学校建这个花园需要的投资额.
解答:精英家教网解:作BH⊥CA于H,如图,
∵∠BAC=120°,
∴∠BAH=60°,
在Rt△BAH中,sin∠BAH=
BH
AB

∴BH=ABsin60°=20×
3
2
=10
3

∴S△ABC=
1
2
BH•AC=
1
2
×10
3
×30=150
3
≈150×1.732=259.8(每平方米)
∴学校建这个花园需要投资额=30×259.8=7794(元).
故选A.
点评:本题考查了二次根式的应用:二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,精英家教网BC=80m,CD=40m,现计划在上面建设一个面积为S的矩形综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m.
(1)求边AD的长;
(2)设PA=x(m),求S关于x的函数关系式,并指出自变量x的取值范围;
(3)若S=3300m2,求PA的长.(精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(48):2.7 最大面积是多少(解析版) 题型:解答题

如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,现计划在上面建设一个面积为S的矩形综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m.
(1)求边AD的长;
(2)设PA=x(m),求S关于x的函数关系式,并指出自变量x的取值范围;
(3)若S=3300m2,求PA的长.(精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(51):6.4 二次函数的应用(解析版) 题型:解答题

如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,现计划在上面建设一个面积为S的矩形综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m.
(1)求边AD的长;
(2)设PA=x(m),求S关于x的函数关系式,并指出自变量x的取值范围;
(3)若S=3300m2,求PA的长.(精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(52):2.8 二次函数的应用(解析版) 题型:解答题

如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,现计划在上面建设一个面积为S的矩形综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m.
(1)求边AD的长;
(2)设PA=x(m),求S关于x的函数关系式,并指出自变量x的取值范围;
(3)若S=3300m2,求PA的长.(精确到0.1m)

查看答案和解析>>

同步练习册答案