精英家教网 > 初中数学 > 题目详情
7.如图,边长为1的小正方形构成的网格中,⊙O半径为1,圆心O在格点上,则tan∠AED=(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

分析 根据锐角三角函数的定义求出tan∠ABC,根据圆周角定理得到∠AED=∠ABC,得到答案.

解答 解:∵AC=1,AB=2,
∴tan∠ABC=$\frac{AC}{AB}$=$\frac{1}{2}$,
由圆周角定理得,∠AED=∠ABC,
∴tan∠AED=$\frac{1}{2}$,
故选:C.

点评 本题考查的是锐角三角函数的定义、圆周角定理的应用,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,在四边形ABCD中,∠A=90°,BD⊥CD,∠ADB=∠C,若AB=4,AD=2,则BC的长为5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在矩形ABCD中,点E在AD上,点F、点H在BC上,若点E与点B关于AH对称,点E与点F关于BD对称,AH与BD相交于点G,则tan∠GBH=$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.有一人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮发送共有30人手机上获得同一条信息,则每轮发送短信一个人要5个人发短信.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.对于非零的两个实数a,b,规定a⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为(  )
A.-13B.13C.2D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=$\sqrt{6}$,则AE=2(提示:可过点A作BD的垂线)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:关于x的方程x2-(k+1)+$\frac{1}{4}$k2+1=0的两根是一个矩形两邻边的长.
(1)k取何值时,方程有两个实数根;
(2)当矩形的对角线长为$\sqrt{5}$时,求k的值;
(3)当k为何值时,矩形变为正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知x≥5的最小值为a,x≤-7的最大值为b,则ab=-35.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知直线AB:y=-$\frac{1}{2}$x+3,直线AC:y=x-3,点P是直线AB上的动点,过点P作PQ∥y轴交直线AC于点Q,过点P,Q分别作PM⊥y轴于点M,QN⊥y轴于点N,设点P的横坐标为m,当矩形PMNQ的周长为10时,m=2.

查看答案和解析>>

同步练习册答案