A. | 一直减小 | B. | 一直不变 | C. | 先增大后减小 | D. | 先减小后增大 |
分析 设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.
解答 解:在Rt△ABC中,∵∠ACB=90°,AC=4,BC=2,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,设PD=x,AB边上的高为h,
h=$\frac{AC•BC}{AB}$=$\frac{4\sqrt{5}}{5}$,
∵PD∥BC,
∴$\frac{PD}{BC}$=$\frac{AD}{AC}$,
∴AD=2x,AP=$\sqrt{5}$x,
∴S1+S2=$\frac{1}{2}$•2x•x+$\frac{1}{2}$(2$\sqrt{5}$-1-$\sqrt{5}$x)•$\frac{4\sqrt{5}}{5}$=x2-2x+4-$\frac{2\sqrt{5}}{5}$=(x-1)2+3-$\frac{2\sqrt{5}}{5}$,
∴当0<x<1时,S1+S2的值随x的增大而减小,
当1≤x≤2时,S1+S2的值随x的增大而增大.
故选D.
点评 本题考查动点问题的函数图象、三角形面积,平行线的性质、勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | 40 | B. | 35 | C. | 37 | D. | 45 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | A点 | B. | B点 | C. | C点 | D. | D点 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com