精英家教网 > 初中数学 > 题目详情
5.如图,在菱形ABCD中,∠DAB=45°,AB=8,点P为线段AB上一动点,过点P作PE⊥AB交直线AD于E,沿PE将∠A折叠,点A的对称点为点F,连接EF、DF、GF,当△CDF为直角三角形时,AP=2$\sqrt{2}$或4+2$\sqrt{2}$.

分析 分两种情形①如图1,如图1,当DF⊥AB时,△CDF是直角三角形,②如图2,当CF⊥AB时,△DCF是直角三角形分别求出即可.

解答 解:如图1,当DF⊥AB时,△CDF是直角三角形,

∵在菱形ABCD中,AB=8,
∴CD=AD=AB=4,
在Rt△ADF中,∵AD=8,∠DAN=45°DF=AF=4$\sqrt{2}$,
∴AP=$\frac{1}{2}$AF=2$\sqrt{2}$,
如图2,当CF⊥AB时,△DCF是直角三角形,

在Rt△CBF中,∵∠CFB=90°,∠CBF=∠A=45°,BC=8,
∴BF=CF=4$\sqrt{2}$,
∴AF=8+4$\sqrt{2}$,
∴AP=$\frac{1}{2}$AF=4+2$\sqrt{2}$.
故答案为:2$\sqrt{2}$或4+2$\sqrt{2}$.

点评 本题考查了菱形的性质,等腰直角三角形的性质,折叠的性质,熟练掌握折叠的性质是解题的关键,学会正确画出图象,注意分类讨论的思想,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图1,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求证:AD=BC;
(2)如图2,连接BE,DF,请直接写出图中所有相等的线段(AE=CF,AD=BC除外)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在平面直角坐标系中,点A(5,0),点B是y轴上一点,若AB=$\sqrt{41}$,则点B的坐标为B(0,±4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)16×2-4+(-$\frac{1}{3}$)0÷(-$\frac{1}{3}$)-2
(2)x4-(x-3)(x+3)(x2+9)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,四边形ABCD中,AD=BC,AC为对角线,且∠DAC=∠BCA,AD⊥CD;
(1)如图1,求证:四边形ABCD为矩形;
(2)如图2,E为AB上一点,连接CE,在CE上取点F,连接AF,且∠FAC=∠ECB,∠DCA=∠DAF,求证:CF=2EB;
(3)如图3,在(2)的条件下,连接BF并延长,若BF的延长线过点D,当DF=4时,求CF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,半径为1的半圆的圆心在原点,直径AB在x轴上,过原点的任意一条半径与半圆交于点P,过P作PN垂直于x轴,N为垂足,则∠OPN的平分线过定点(  )
A.(0,-1)B.(0,-$\frac{4}{5}$)C.(0,-$\frac{3}{5}$)D.(0,-$\frac{6}{5}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.【问题发现】
       如图1,△ACB和△DCE均为等边三角形,若B,D,E在同一直线上,连接AE.
(1)请你在图中找出一个与△AEC全等的三角形:△BDC;
(2)∠AEB的度数为60°;CE,AE,BE的数量关系为CE+AE=BE.
【拓展探究】
        如图2,△ACB是等腰直角三角形,∠AEB=90°,连接CE,过点C作CD⊥CE,交BE于点D,试探究CE,AE,BE的数量关系,并说明理由.
【解决问题】
        如图3,在正方形ABCD中,CD=5$\sqrt{2}$,点P为正方形ABCD外一点,∠APC=90°,且AP=6,试求点P到CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.有这样一个问题:探究函数y=-$\sqrt{x+2}$+|x|的图象与性质.?
小军根据学习函数的经验,对函数y=-$\sqrt{x+2}$+|x|的图象与性质进行了探究.
下面是小军的探究过程,请补充完整:
(1)函数y=-$\sqrt{x+2}$+|x|的自变量x的取值范围是x≥-2;
(2)表是y与x的几组对应值?
x-2-1.9-1.5-1-0.501234
y21.600.800-0.72-1.41-0.3700.761.55
在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(3)观察图象,函数的最小值是-$\sqrt{2}$;
(4)进一步探究,结合函数的图象,写出该函数的一条性质(函数最小值除外):当-2≤x<0时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知四边形ABCD是矩形,对角线AC、BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E.
求证:四边形OCED是菱形.

查看答案和解析>>

同步练习册答案