精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
(1)
(2)①x=﹣3时,l最大=15;
②点P有三个,分别是P1,2),P2,2),P3).

试题分析:(1)利用待定系数法求出b,c即可;
(2)①根据△AOM∽△PED,得出DE:PE:PD=3:4:5,再求出PD=yP﹣yD求出二函数最值即可;
②当点G落在y轴上时,由△ACP≌△GOA得PC=AO=2,即,解得
所以得出P点坐标,当点F落在y轴上时,,解得,可得P点坐标.
试题解析:(1)对于,当y=0,x=2.当x=﹣8时,y=﹣
∴A点坐标为(2,0),B点坐标为(﹣8,﹣).
由抛物线经过A、B两点,

解得

(2)①设直线与y轴交于点M,

当x=0时,y=.∴OM=
∵点A的坐标为(2,0),∴OA=2.∴AM=
∵OM:OA:AM=3:4:5.
由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM∽△PED.
∴DE:PE:PD=3:4:5.
∵点P是直线AB上方的抛物线上一动点,
∵PD⊥x轴,
∴PD两点横坐标相同,
∴PD=yP﹣yD=﹣()=﹣x2x+4,

∴x=﹣3时,l最大=15;
②当点G落在y轴上时,如图2,

由△ACP≌△GOA得PC=AO=2,
,解得
所以P1,2),P2,2),
如图3,过点P作PN⊥y轴于点N,过点P作PS⊥x轴于点S,

由△PNF≌△PSA,
PN=PS,可得P点横纵坐标相等,
故得当点F落在y轴上时,
,解得
可得P3),P4),(舍去).
综上所述:满足题意的点P有三个,分别是P1,2),P2,2),P3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线)将四边形ABCD面积二等分,求的值;
(3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是(  )
A.b≥-1B.b≤-1C.b≥1D.b≤1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是(    )

A.6      B.2      C.2           D.2+2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线可以由抛物线平移得到,则下列平移过程正确的是
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB=9,BC=3,点E是沿A→B方向运动,点F是沿A→D→C方向运动.现E、F两点同时出发匀速运动,设点E的运动速度为每秒1个单位长度,点F的运动速度为每秒3个单位长度,当点F运动到C点时,点E立即停止运动.连接EF,设点E的运动时间为x秒,EF的长度为y个单位长度,则下列图象中,能表示y与x的函数关系的图象大致是(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数≠0)图象如图所示,下列结论:①>0;②=0;③当≠1时,;④>0;⑤若,且,则=2.其中正确的有(  )
A.①②③ B.②④ C.②⑤ D.②③⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是(   )

A.          B.
C.        D.

查看答案和解析>>

同步练习册答案