精英家教网 > 初中数学 > 题目详情

将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片(如图2),量得他们的斜边长为 6cm,较小锐角为30° ,再将这两张三角纸片摆成如图3的形状,且点 A、C、E、F 在同一条直线上,点 C 与点 E 重合,保持不动,OB 为 的中线,现对纸片进行如下操作时遇到了三个问题,请你帮助解决.

(1)将图3中的沿CA向右平移,直到两个三角形完全重合为止.设平移距离 CE 为 x(即 CE 的长),求平移过程中,重叠部分的面积 S 与 x 的函数关系式,以及自变量的取值范围;

(2) 平移到 E 与O 重合时(如图4),将绕点 O 顺时针旋转,旋转过程中的斜边 EF交的 BC 边于 G,求点 C、O、G构成等腰三角形时,的面积;

(3)在(2)的旋转过程中, 的边 DE,EF分别交线段BC于点 G、H(不与端点重合).求旋转角为多少度时,线段BH、GH、CG之间满足 , 请说明理由.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)
精英家教网
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片△ABC、△DEF(如图2),量得他们的斜边长为6cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,且点A、C、E、F在同一条直线上,点C与点E重合.△ABC保持不动,OB为△ABC的中线.现对△DEF纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△DEF沿CA向右平移,直到两个三角形完全重合为止.设平移距离CE为x(即CE的长),求平移过程中,△DEF与△BOC重叠部分的面积S与x的函数关系式,以及自变量的取值范围;
(2)△DEF平移到E与O重合时(如图4),将△DEF绕点O顺时针旋转,旋转过程中△DEF的斜边EF交△ABC的BC边于G,求点C、O、G构成等腰三角形时,△OCG的面积;
(3)在(2)的旋转过程中,△DEF的边EF、DE分别交线段BC于点G、H(不与端点重合).求旋转角∠COG为多少度时,线段BH、GH、CG之间满足GH2+BH2=CG2,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.
精英家教网
小明在对这两张三角形纸片进行如下操作时遇到了两个问题,请你帮助解决.
(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段FG的长度;
(2)将图3中的△ABF沿直线AF翻折到图5的位置,AB1交DE于点H,请证明:AH=DH.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012年辽宁省建平县八年级单科数学竞赛卷(解析版) 题型:解答题

如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.

(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;

(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;

(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请说明:AH=DH.

 

查看答案和解析>>

同步练习册答案