【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,若点P能落在线段AB上,则线段CF长的最小值是_____.
科目:初中数学 来源: 题型:
【题目】如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.
(1)求抛物线L的解析式;
(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).
(1)当t=3时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求t;
(3)若存在实数t1 , t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在正方形ABCD中,E、F分别是边BC、CD上的点,且∠EAF=45°,把△ADF绕着点A顺时针旋转90°得到△ABG,请直接写出图中所有的全等三角形;
(2)在四边形ABCD中,AB=AD,∠B=∠D=90°.
①如图2,若E、F分别是边BC、CD上的点,且2∠EAF=∠BAD,求证:EF=BE+DF;
②若E、F分别是边BC、CD延长线上的点,且2∠EAF=∠BAD,①中的结论是否仍然成立?请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式.例
如图1可以得到.请解答下列问题:
(1)根据图2,完成数学等式: = ;
(2)观察图3,写出图3中所表示的等式: =____________.
(3)若、、,且,请利用(2)所得的结论求:的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们10次射击命中的环数如下:
甲 | 7 | 9 | 8 | 6 | 10 | 7 | 9 | 8 | 6 | 10 |
乙 | 7 | 8 | 9 | 8 | 8 | 6 | 8 | 9 | 7 | 10 |
根据测试成绩,你认为选择哪一名运动员参赛更好?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com