精英家教网 > 初中数学 > 题目详情
(2012•洛江区质检)如图,将图中线段AB绕点A按顺时针方向旋转90°后,得到线段AB′,则点B′的坐标是
(3,0)
(3,0)
;在整个旋转过程中,线段AB所扫过的面积为
(结果保留π).
分析:解题的关键是抓住旋转的三要素:旋转中心点A,旋转方向顺时针,旋转角度90°,通过画图得B′;线段AB在旋转过程中扫过的面积是一个扇形,根据扇形公式计算即可.
解答:解:由图知A(1,2),B(3,4)根据旋转中心A点,旋转方向顺时针,旋转角度90°,画图,
从而得B′点坐标为(3,0).
线段AB所扫过的面积为
90π×8
360
=2π;
故答案为:(3,0),2π.
点评:此题考查了坐标与图形变化,用到的知识点是图形的旋转、扇形的面积公式、勾股定理等,关键是抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图确定所求点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•洛江区质检)下列事件是必然事件的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛江区质检)如果x+
1
x
=2
,则x2+
1
x2
=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛江区质检)如图,△AOC是一个等边三角形,△ABC内接于⊙O,则∠ABC=
30
30
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛江区质检)先化简,再求值:
x2
x+1
+
2x+1
x+1
,其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛江区质检)如图,抛物线y=ax2+4经过x轴上的一点A(-2,0),P是抛物线上的一动点,以P为圆心作⊙P;
(1)求a的值;
(2)是否存在一个⊙P与两坐标轴的正半轴都相切?若存在,请你求⊙P的半径;若不存在,请说明理由.
(3)若⊙P的半径为
3
2
2
,当⊙P与直线y=x-5相切时,求P点的坐标.

查看答案和解析>>

同步练习册答案