精英家教网 > 初中数学 > 题目详情

已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.

(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);

(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;

(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).

 

 

【答案】

(1)DF=CF,且DF⊥CF;(2)(1)中的结论仍然成立,证明见解析;(3).

【解析】

试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;

(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;

(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC= ,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.

试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.

∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.

∵BF=DF,∴∠DBF=∠BDF.

∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.

同理得:∠CFE=2∠CBF,

∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.

∴DF=CF,且DF⊥CF.

(2)(1)中的结论仍然成立.证明如下:

如图,此时点D落在AC上,延长DF交BC于点G.

∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.

∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.

∵AD=DE,∴AD=GB.

∵AC=BC,∴AC-AD=BC-GB. ∴DC=GC.

∵∠ACB=90°,∴△DCG是等腰直角三角形.

∵DF=GF,∴DF=CF,DF⊥CF.

(3)如图,延长DF交BA于点H,

∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.

∴∠AED=∠ABC=45°.

∵由旋转可以得出,∠CAE=∠BAD=90°,

∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.

∵F是BE的中点,∴EF=BF. ∴△DEF≌△HBF. ∴ED=HB.

∵AC=,在Rt△ABC中,由勾股定理,得AB=4.

∵AD=1,∴ED=BH=1.∴AH=3.

在Rt△HAD中,由勾股定理,得DH=

∴DF=,∴CF=.

∴线段CF的长为.

考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.
(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=2
2
,求此时线段CF的长(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南岗区二模)如图,已知△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,求证:AD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC和△BAD中,AC=DB,若不增加任何字母与辅助线,要证明△ABC≌△BAD;则还需要增加一个条件是
AD=BC
AD=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重合),作PE⊥PB交AD于点E,交AB于点F.
(1)求证:∠AEP=∠ABP.
(2)猜想线段PB、PE的数量关系,并证明你的猜想.
(3)若P为AC延长线上任意一点(如图②),PE交DA的延长线于点E,其他条件不变,(2)中的结论是否成立?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC和△A′B′C′,AD是BC边上的高,A′D′是B′C′边上的高,AD=A′D′,AB=A′B′,AC=A′C′,则∠C和∠C′的关系是
不一定相等
不一定相等
.(填“相等”“不一定相等”或“一定不相等”)

查看答案和解析>>

同步练习册答案