精英家教网 > 初中数学 > 题目详情
19.“重百”、“沃尔玛”两家超市出售 同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.
(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)
(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.

分析 (1)设一个保温壶售价为x元,一个水杯售价为y元,根据买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元,列出方程组,求解即可.
(2)根据题意先分别计算出在“重百”超市购买所需费用和在“沃尔玛”超市购买所需费用,然后进行比较即可得出答案.

解答 解:(1)设一个保温壶售价为x元,一个水杯售价为y元.
由题意,得:$\left\{\begin{array}{l}{x+y=60}\\{2x+3y=130}\end{array}\right.$.
解得:$\left\{\begin{array}{l}{x=50}\\{y=10}\end{array}\right.$.
答:一个保温壶售价为50元,一个水杯售价为10元.
(2)选择在“沃尔玛”超市购买更合算.
理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),
在“沃尔玛”超市购买所需费用为:50×4+(15-4)×10=310(元),
∵310<315,
∴选择在“沃尔玛”超市购买更合算.

点评 此题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:
(1)${(\sqrt{5}+1)^0}-\sqrt{12}+|{-\sqrt{3}}|$
(2)$(\sqrt{27}+\sqrt{20})+(\sqrt{75}-\sqrt{5})$
(3)$(\sqrt{2}+3)(\sqrt{2}-5)$
(4)$(4\sqrt{2}-3\sqrt{6})÷2\sqrt{2}$
(5)$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$
(6)${(\sqrt{3}-\sqrt{2})^2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=22014

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在平面直角坐标系xOy中,四边形ABCD的顶点分别为A(0,2),B(0,-4),C(3,0),D(3,1).点E沿A→B方向运动,点F沿B→C→D方向运动.现E,F两点同时出发,都以每秒1个单位长度的速度运动.设点E的运动时间为x(0≤x≤6)秒,△OEF的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,将直线$y=\frac{{\sqrt{3}}}{3}x$向上平移2个单位交坐标轴于点A、D,然后绕AD中点B逆时针旋转60°,三条直线与y轴围成四边形ABCO,若四边形始终覆盖着二次函数y=x2-2mx+m2-1图象的一部分,则满足条件的实数m的取值范围为-$\sqrt{3}$-$\sqrt{2}$≤m≤$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为(  )
A.6B.5C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:AP=PD;
(2)若⊙O的半径为5,AF=7,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.
(1)求证:AB=AF;
(2)若AB=5,AD=$\frac{25}{4}$,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在平面直角坐标系中,已知点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(-1,-2).

查看答案和解析>>

同步练习册答案