精英家教网 > 初中数学 > 题目详情
如图,已知AB为⊙O的直径,点C为半圆上的三等分点,在直径AB所在的直线上找一点P,连接CP交⊙O于点Q,使PQ=OQ,则∠CPO=
20°或40°或100°
20°或40°或100°
分析:已知如图,连接OC,根据条件可得:∠A0C=60°,设∠CPO=x°,由隐藏条件:OQ=OC可得∠OCQ=∠CQO,再利用三角形外角和定理可建立关于x的方程,求出x的值即可得问题答案,本题还有其他两种情况,解答过程同上.
解答:解:①当P在直线AB延长线上时,如图所示:
连接OC,
设=x°,
∵PQ=OQ,
∴∠OQP=∠CPO=x°,
∴∠CQO=2x°,
∵OQ=OC,
∴∠OCQ=∠CQO=2x°,
∵点C为半圆上的三等分点,
∴∠AOC=60°,
∴x+2x=60,
∴x=20°,
∴∠CPO=20°,
②当P在直线BA延长线上时,∠CPO=40°;
③当P在线段AB上时,∠CPOO=100°,
故答案为:20°或40°或100°
点评:本题考查了圆心角和所对弧之间的数量关系和三角形的外角和定理,根据n°的圆心角对着n°的弧以及一条弧所对的圆周角等于它所对的圆心角的一半,得圆周角的度数等于它所对的弧的度数的一半即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.
求证:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB为⊙O的直径,直线l与⊙O相切于点D,AC⊥l于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼和浩特)如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
35
,求PE的长.

查看答案和解析>>

同步练习册答案