精英家教网 > 初中数学 > 题目详情
正方形ABCD的边AB是⊙O的弦,CF切⊙O于点E,交AD于点F,且切点E在正方形的内部,AE,BE的长精英家教网是方程x2-3x+m=0两个实根.
(1)当AB是⊙O的直径时(如图),
①用含m的代数式表示AB的长;
②求m的值和AF的长;
(2)当AB不是⊙O的直径时,△ABE能否与以B、C、E为顶点的三角形相似?请说明理由,若相似,求AE+AB的长.
分析:(1)①根据圆周角定理知∠AEB=90°,则△ABE是直角三角形,利用韦达定理及勾股定理即可得到AB的表达式;
②连接OC,交BE于M,由切线长定理知∠ECO=∠BCO,即∠EOC=∠BOC,那么由垂径定理即可得到OC垂直平分BE;由于AB=BC,易证得△BMC≌△AEB,则BE=CM=2BM,由此可得到BM、OM、MC的比例关系式,由于OM=
1
2
AE(三角形中位线定理),根据AE+BE的值,即可求得OM、MC的长,从而得到AE、BE的值,也就能求出m的值和AB的长;
连接OF,交AE于N,同上可证得OF垂直平分AE,则ON是△ABE的中位线,那么∠AOF和∠ABE的正切值相等,已知了OA的长,即可得到AF的长.
(2)由于CE切⊙O于E,由弦切角定理知∠CEB=∠EAB,由于E在正方形内部,即AE不与BC平行,所以∠AEB与∠EBC不相等,若两三角形相似,只有∠AEB=∠ECB,可得BE2=AB•BC=AB2,即BE与正方形的边长相等,因此两个三角形有可能相似,且此时AE+AB=AE+BE=3.
解答:解:(1)①根据题意,有AE,BE的长是方程x2-3x+m=0两个实根,
则AE+BE=3,AE•BE=m;
又有AB是⊙O的直径,可得AB2=AE2+BE2
化简可得:AB2=(AE+BE)2-2AE•BE=9-2m,
故AB=
9-2m

②连接OC、OF,分别交BE、AE于M、N,连接OE;精英家教网
∵CE、CB都是⊙O的切线,
∴∠ECO=∠BCO,∠OEC=∠OBC=90°,
∴∠EOC=∠BOC,
∴OM垂直平分BE,即OM⊥BE、EM=BM,
又∵O是AB的中点,∴OM是△ABE的中位线,即AE=2OM;
△ABE和△BMC中:
AB=BC,∠AEB=∠BMC=90°,∠CBM=∠EAB(弦切角定理),
∴△AEB≌△BMC,即MC=BE=2BM=4OM;
设OM=x,则AE=BM=2x,BE=MC=4x,
∵AE+BE=3,即2x+4x=3,故x=
1
2

∴AE=1,BE=2,m=AE•E=2,AB=
5

同理可证得ON是△ABE的中位线,则ON∥BE,∠AOF=∠ABE,
∴tan∠AOF=tan∠ABE=
1
2
,即AF=
1
2
OA=
1
4
AB=
5
4


(2)由于CF切⊙O于E,则∠CEB=∠EAB;
∵点E在正方形ABCD的内部,精英家教网
∴AE、BC不平行,即∠AEB≠∠CBE;
若△ABE能否与以B、C、E为顶点的三角形相似,
则必有∠AEB=∠ECB,此时:
BE
AB
=
BC
BE
,即BE2=AB2,BE=AB;
所以△ABE可以与以B、C、E为顶点的三角形相似,此时BE等于正方形的边长;
那么AE+AB=AE+BE=3.
点评:此题考查了正方形的性质、切线的性质、弦切角定理、垂径定理、三角形中位线定理以及全等三角形、相似三角形的判定和性质等重要知识点,理清图中线段、角之间的关系是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边AB=1,
BD
AC
都是以1为半径的圆弧,则无阴影两部分的面积之差是(  )
A、
π
2
-1
B、1-
π
4
C、
π
3
-1
D、1-
π
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长是6,点F在AD上,点E在AB的延长线上,CE⊥CF,且△CE精英家教网F的面积是24.
(1)求证:△CDF≌△CBE;
(2)求DF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

七巧板是我们祖先创造的一种智力玩具,它来源于勾股法,如图1整幅七巧板由正方形ABCD分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形)组成.如图2,是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是
 
cm.(结果保留根号).
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为4a,E是CD边的中点,F在BC边上移动.问当F移到什么位置时,AE平分∠FAD?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,在正方形ABCD的边BC,CD上分别有点E,F,∠EAF=45°,AH⊥EF.
求证:(1)AH=AB;(2)猜想EF与BE、DF的关系并给出证明.

查看答案和解析>>

同步练习册答案