精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标中,矩形OABC,OA=4,AB=2,直线y=-x+
3
2
与坐标轴交于D,E两点,设M是AB的中点,P是线段DE上的动点.过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,梯形PMBH的面积是______.
设P(x,y),连接PN、MN、NF,
∵点P在y=-x+
3
2
上,
∴P(x,-x+
3
2
),
依题意知:PN⊥MN,FN⊥BC,F是圆心,
∴N是线段HB的中点,HN=NB=
4-x
2
,PH=2-(-x+
3
2
)=x+
1
2
,BM=1,
∵∠HPN+∠HNP=∠HNP+∠BNM=90°,
∴∠HPN=∠BNM,
又∵∠PHN=∠B=90°,
∴Rt△PNHRt△NMB,
HN
BM
=
PH
BN

4-x
2
1
=
x+
1
2
4-x
2

∴x2-12x+14=0,
解得:x=6+
22
(x>
3
2
舍去),x=6-
22

SPMBH=
(BM+HP)•BH
2
=
(1+6-
22
+
1
2
)(4-6+
22
)
2
=-
37
2
+
19
4
22

故答案为:-
37
2
+
19
4
22

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知直线L的解析式为y=-3x+3,且L与x轴交于点D,直线m经过点A、B,直线L、m交于点C.
(1)求直线m的解析式;
(2)在直线m上存在异于点C的点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点B、C在x轴的负半轴上,点A在y轴的负半轴上,以AC为直径的圆与AB的延长线交于点D,CD=AO,如果AO>BO,且AO、BO是关于x的二次方程x2-14x+48=0的两个根.
(1)求点D的坐标;
(2)定义:在直角坐标系中,有点M(m,n),对于直线y=kx+b,当x=m时,y=km+b>n,则称点M在直线下方;当x=m时,y=km+b=n,则称点M在直线上;当x=m时,y=km+b<n,则称点M在直线上方.
请你根据上述定义解决下列问题:
若点P在直径AC所在直线上,且AC=4AP,直线l经过点P和Q(6,-16),请你判断点D和直线l的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=-
1
3
(x-2)2+1
的顶点为C,已知y=-kx+3的图象经过点C,则这个一次函数图象与两坐标轴所围成的三角形面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=
1
2
x+2
分别交x轴、y轴于点A、C,已知P是该直线在第一象限内的一点,PB⊥x轴于点B,S△APB=9.
(1)求△AOC的面积;
(2)求点P的坐标;
(3)设点R与点P在同一反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴于点T,是否存在点R使得△BRT与△AOC相似,若存在,求点R的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形DEFG是△ABC的内接矩形,如果△ABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象如图所示:

(1)写出点A、B的坐标,并求出k、b的值;
(2)在所给的平面直角坐标系内画出函数y=bx+k的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知y-4与x成正比例,且x=6时y=-4
(1)求y与x的函数关系式.
(2)此直线在第一象限上有一个动点P(x,y),在x轴上有一点C(-2,0).这条直线与x轴相交于点A.求△PAC的面积S与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.
(1)分别写出甲、乙两厂的收费y(元)、y(元)与印制数量x(本)之间的关系式;
(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.

查看答案和解析>>

同步练习册答案