精英家教网 > 初中数学 > 题目详情
某农场计划建一个养鸡场,为了节约材料,鸡场一边靠着原有的-堵墙(墙足够长),另外的部分用30米的竹篱笆围成,现有两种方案:①围成一个矩形(如左图);②围成一个半圆形(如右图).设矩形的面积为S1平方米,宽为x米,半圆形的面积为S2平方米,半径为r米,请你通过计算帮助农场主选择一个围成区域面积最大的方案.(π≈3)
【答案】分析:本题的关键是根据题意,按照等量关系“矩形面积=长×宽”“半圆面积=×半径2”列出函数关系式,再求其最值.
解答:解:方案①:S1=x(30-2x)(1分)
=-2x2+30x
=-2(x-2+,(2分)
当x=米时,
S1取最大值平方米;(3分)
方案②:由30=πr,π≈3,得r=10米,(4分)
S2=πr2=×3×100=150平方米,(5分)
<150,
∴S1<S2,(6分)
∴应选择方案②.(7分)
点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某农场计划建一个养鸡场,为了节约材料,鸡场一边靠着原有的-堵墙(墙足够长),另外的部分用30米的竹篱笆围成,现有两种方案:①围成一个矩形(如左图);②围成一个半圆形(如右图).设矩形的面积为S1平方米,宽为x米,半圆形的面积为S2平方米,半径为r米,请你通过计算帮助农场主选择一个围成区域面积最大的方案.(π≈3)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•包头)某农场计划建一个养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长为28米),另外的部分用竹篱笆围成.
(1)若用长为50米的竹篱笆围成面积为300米2的矩形养鸡场(如图1),设矩形的长为y米,宽为x米,求x和y的值;
(2)若用长为30米的竹篱笆围成矩形(如图1)或半圆形(如图2)养鸡场,设矩形的面积为S12、长为y米、宽为x米,半圆形的面积为S22、半径为r米,试比较S1和S2的大小.(取π≈3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某农场计划建一个养鸡场,为了节约材料,鸡场一边靠着原有的-堵墙(墙足够长),另外的部分用30米的竹篱笆围成,现有两种方案:①围成一个矩形(如左图);②围成一个半圆形(如右图).设矩形的面积为S1平方米,宽为x米,半圆形的面积为S2平方米,半径为r米,请你通过计算帮助农场主选择一个围成区域面积最大的方案.(π≈3)

查看答案和解析>>

科目:初中数学 来源:甘肃省中考真题 题型:解答题

某农场计划建一个养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙足够长),另外的部分用30米的竹篱笆围成,现有两种方案:①围成一个矩形(如下左图);②围成一个半圆形(如下右图),设矩形的面积为S1平方米,宽为x米,半圆形的面积为S2平方米,半径为r米,请你通过计算帮助农场主选择一个围成区域面积最大的方案(π≈3)。

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(25):2.3 二次函数的应用(解析版) 题型:解答题

某农场计划建一个养鸡场,为了节约材料,鸡场一边靠着原有的-堵墙(墙足够长),另外的部分用30米的竹篱笆围成,现有两种方案:①围成一个矩形(如左图);②围成一个半圆形(如右图).设矩形的面积为S1平方米,宽为x米,半圆形的面积为S2平方米,半径为r米,请你通过计算帮助农场主选择一个围成区域面积最大的方案.(π≈3)

查看答案和解析>>

同步练习册答案