精英家教网 > 初中数学 > 题目详情

【题目】m是何值时,关于x的方程(m2+2x2+m﹣1x﹣4=3x2

1)是一元二次方程;

2)是一元一次方程;

3)若x=﹣2是它的一个根,求m的值.

【答案】1m≠±1;(2m=1;(3m1=

【解析】【试题分析】(m2+2x2+m1x4=3x2,化为一般式得:

(1)根据一元二次方程的定义,要求二次项系数不能为0,即 解得m≠±1

2根据一元一次方程的定义,要求二次项不存在,即二次项系数为0,且一次项系数不为0,即 解得m=1

(3)根据方程的根的定义将x=2代入 得: 解得:m1= m2=1,又因为,所以m=

【试题解析】

原方程可化为(m2﹣1x2+m﹣1x﹣4=0

1)当m2﹣1≠0,即m≠±1时,是一元二次方程;

2)当m2﹣1=0,且m﹣1≠0,即m=﹣1时,是一元一次方程;

3x=﹣2时,原方程化为:2m2﹣m﹣3=0

解得,m1=m2=1(舍去).即m=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x22xm20

1求证:该方程有两个不相等的实数根;

2)若该方程有两个实数根为x1x2,且x12x25,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是(  )

A. 30 B. 34 C. 36 D. 40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映st之间函数关系的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,点EAD上,BCE=∠ACD=90°BAC=∠DBC=CE

(1)求证:AC=CD

(2)若AC=AE,求DEC的度数.

【答案】(1)证明见解析;(2)112.5°.

【解析】试题分析: 根据同角的余角相等可得到结合条件再加上 可证得结论;
根据 得到 根据等腰三角形的性质得到 由平角的定义得到

试题解析: 证明:

ABCDEC中,

2∵∠ACD90°ACCD

∴∠1D45°

AEAC

∴∠3567.5°

∴∠DEC180°5112.5°

型】解答
束】
21

【题目】一个零件的形状如图所示,工人师傅按规定做得∠B=90°

AB3BC4CD12AD13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.

(1)求证:AE=EC;

(2)当ABC=60°,CEF=60°时,点F在线段BC上的什么位置?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GEDC于点E,GFBC于点F,连结AG.

(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;

(2)若正方形ABCD的边长为1,AGF=105°,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:

(1)这批游客的人数是多少?原计划租用多少辆45座客车?

(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCDCEBE的交点为E,现作如下操作:

第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1

第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2

第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……

n次操作,分别作∠ABEn1和∠DCEn1的平分线,交点为En.

(1)如图①,求证:∠EBC

(2)如图②,求证:∠E1E

(3)猜想:若∠Enb°,求∠BEC的度数.

查看答案和解析>>

同步练习册答案