精英家教网 > 初中数学 > 题目详情
在△ABC中,它的底边为a,底边上的高为h,则三角形的面积S=
1
2
ah
.若h为定长,则此式中,变量是______,常量是______.
∵三角形的面积S=
1
2
ah
,又∵h为定长,即三角形的高不变;
∴三角形的面积与底边的变化有关系,底边越大,面积越大.
∴S和a是变量,
1
2
h是常量.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就为黄金分割比
5
-1
2
,底角平分线与腰的交点为黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB的黄金分割点;
(2)如图2,在△ABC中,AB=AC,若
AB
BC
=
5
-1
2
,则请你求出∠A的度数;
(3)如图3,如果在Rt△ABC中,∠ACB=90°,CD为AB上的高,∠A、∠B、∠ACB的对边分别为a,b,c.若点D是AB的黄金分割点,那么该直角三角形的三边a,b,c之间是什么数量关系?并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图(1)AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是
等底同高
等底同高

(2)如图2梯形ABCD中,AD∥BC,对角线AC、BD交于点O,请找出图中三对面积相等的三角形,
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC

(3)李明家有一块四边形田地,如图3所示.AE是一条小路,它把田地分成了面积相等的两部分(小路宽忽略不计).在CD边上点F处有一口水井,为方便灌溉田地,李明打算过点F修一条笔直的水渠,且要求水渠也把整个田地分成面积相等的两部分(水渠宽忽略不计).请你帮李明设计出修水渠的方案,作图并写出设计方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一块直角三角形土地,它两条直角边AB=300米,AC=400米,某单位要沿着斜边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,设EF为x,矩形面积为y.
(1)求△ABC中BC上的高AH;
(2)求y与x之间的函数关系;
(3)当矩形的长x取何值时,这个矩形的面积最大?

查看答案和解析>>

科目:初中数学 来源:2012年甘肃省中考数学仿真模拟试卷(解析版) 题型:解答题

如图,有一块直角三角形土地,它两条直角边AB=300米,AC=400米,某单位要沿着斜边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,设EF为x,矩形面积为y.
(1)求△ABC中BC上的高AH;
(2)求y与x之间的函数关系;
(3)当矩形的长x取何值时,这个矩形的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就为黄金分割比数学公式,底角平分线与腰的交点为黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB的黄金分割点;
(2)如图2,在△ABC中,AB=AC,若数学公式,则请你求出∠A的度数;
(3)如图3,如果在Rt△ABC中,∠ACB=90°,CD为AB上的高,∠A、∠B、∠ACB的对边分别为a,b,c.若点D是AB的黄金分割点,那么该直角三角形的三边a,b,c之间是什么数量关系?并证明你的结论.

查看答案和解析>>

同步练习册答案