精英家教网 > 初中数学 > 题目详情
(2013•河池)如图,在△ABC中,AC=6,BC=5,sinA=
2
3
,则tanB=
4
3
4
3
分析:如图,过点C作CD⊥AB于点D.通过解直角△ACD可以求得CD=4;然后通过解直角△CDB来求tanB的值.
解答:解:如图,过点C作CD⊥AB于点D.
∵在直角△ACD中,AC=6,sinA=
2
3

CD
AC
=
CD
6
=
2
3
,则CD=4.
∴在直角△CDB中,由勾股定理求得BD=
BC2-CD2
=
52-42
=3,
∴tanB=
CD
BD
=
4
3

故答案是:
4
3
点评:本题考查了解直角三角形.在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•河池)如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)如图所示的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)如图,AB为⊙O的直径,C为⊙O外一点,过点C作的⊙O切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是(  )

查看答案和解析>>

同步练习册答案