【题目】在平面直角坐标系中,二次函数的对称轴为.点在直线上.
(1)求, 的值;
(2)若点在二次函数上,求的值;
(3)当二次函数与直线相交于两点时,设左侧的交点为,若,求的取值范围.
【答案】答案见解析
【解析】试题分析:(1)由对称轴公式计算即可,把点A的坐标代入直线解析式即可;
(2)把点D的坐标代入抛物线解析式即可;
(3)把x=-3和x=-1分别代入直线的解析式得到两个点的坐标,再把这两个点的坐标代入抛物线的解析式即可求出a的取值范围.
试题解析:解:(1)x==1,即b=1.∵点A(-2,m)在直线y=-x+3上,∴当x=-2时,m=-(-2)+3=5;
(2)∵点D(3,2)在y=ax2-2ax+1上,∴当x=3时,2=a×32-2×3a+1,解得a=;
(3)∵当x=-3时,y=-x+3=6,∴当(-3,6)在y=ax2-2ax+1上时,6=a(-3)2-2×(-3a)+1,∴a=.又∵当x=-1时,y=-x+3=4,∴当(-1,4)在y=ax2-2ax+1上时,4=a(-1)2-2×(-a)+1,∴a=1,∴<a<1.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).
(1)求抛物线的表达式,并写出其顶点坐标;
(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )
A.2:5 B.14:25 C.16:25 D.4:21
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级某班从A、B、C、D四位同学中选出两名同学去参加学校的羽毛球双打比赛.
(1)请用树状图法,求恰好选中A、C两位同学的概率;
(2)若已确定B被选中,再从其余三位同学中随机选取一位,求恰好选中C同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,李师傅想用长为80米的栅栏,再借助教学楼的外墙围成一个矩形的活动区. 已知教学楼外墙长50米,设矩形的边米,面积为平方米.
(1)请写出活动区面积与之间的关系式,并指出的取值范围;
(2)当为多少米时,活动区的面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.
(1)该班男生和女生各有多少人?
(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次排列:(1,0)(2,0)(2,1)(1,1)(1,2)(2,2)根据这个规律,第2020个点的坐标为( )
A.(45,5)B.(45,6)C.(45,7)D.(45,8)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com