精英家教网 > 初中数学 > 题目详情
15.如图,一次函数y=kx+b的图象与反比例函数y=$\frac{m}{x}$的图象交于点A﹙-2,-5﹚,C﹙5,n),交y轴于点B,交x轴于点D.
(1)求反比例函数和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积;
(3)直接写kx+b>$\frac{m}{x}$的解集.

分析 (1)将点A的坐标代入反比例函数解析式中即可求出反比例函数的解析式,然后求出点C的坐标,将A、C的坐标代入一次函数中即可求出一次函数的解析式.
(2)求出点B的坐标,然后根据A、C的坐标即可求出△AOC的面积;
(3)根据图象即可求出x的解集.

解答 解:(1)设反比例函数的解析式为:y=$\frac{m}{x}$
∵反比例函数的图象经过点A﹙-2,-5﹚,
∴m=(-2)×(-5)=10.
∴反比例函数的表达式为y=$\frac{10}{x}$.
∵点C﹙5,n﹚在反比例函数的图象上,
∴n=$\frac{10}{5}$=2.
∴C的坐标为﹙5,2﹚.
∵一次函数的图象经过点A,C,将这两个点的坐标代入y=kx+b,得
$\left\{\begin{array}{l}{-5=-2k+b}\\{2=5k+b}\end{array}\right.$
解得$\left\{\begin{array}{l}{k=1}\\{b=-3}\end{array}\right.$
∴所求一次函数的表达式为y=x-3.
(2)∵一次函数y=x-3的图象交y轴于点B,
∴B点坐标为﹙0,-3﹚.
∴OB=3.
∵A点的横坐标为-2,C点的横坐标为5,
∴S△AOC=S△AOB+S△BOC=$\frac{1}{2}$OB•|-2+$\frac{1}{2}$OB×5=$\frac{1}{2}$OB•(2+5)=$\frac{21}{2}$
(3)由图象可知:x的范围是:-2<x<0或x>5.

点评 本题考查一次函数与反比例函数的综合问题,涉及待定系数法求解析式,解方程,三角形面积公式等知识,本题属于中等题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC交⊙O于点E.
(1)若D为AC的中点,证明:DE是⊙O的切线;
(2)若OA=$\sqrt{3}$,CE=1,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,D是Rt△ABC斜边上的一点,DE⊥AC,DF⊥BC,垂足分别为E,F,且DE=DF.若AD=3,DB=4,试求S△ADE+S△BDF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知甲数比乙数大10,且甲数的2倍和乙数的6倍相等,则甲、乙两个数的和为(  )
A.30B.25C.20D.15

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)$\frac{{{a^2}x}}{{b{y^2}}}$•$\frac{{a{y^2}}}{{{b^2}x}}$;                
(2)$\frac{x-2}{x+3}$•$\frac{{{x^2}-9}}{{{x^2}-4}}$;
(3)($\frac{-3ac}{2b}$)2÷(-9ac2);          
(4)$\frac{{{{({a-b})}^2}}}{ab}$-$\frac{{{a^2}-{b^2}}}{ab}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若点P(2-m,m+1)在第二象限,则m的范围是m>2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,在△ABC中,点D为边AC上一点,且∠DBC=∠BAC.
(1)求证:BC2=CD•AC;
(2)如图2,点E、G分别是BC,DC边上一点,连接AE交BD于点F,连接EG,且∠BDC+∠AEG=180°,
①若点E为BC中点,$\frac{EG}{EF}=\frac{1}{\sqrt{5}}$,求$\frac{AB}{BC}$的值;
②若$\frac{BE}{CE}=\frac{1}{n}$,$\frac{EG}{EF}=\frac{1}{k}$,求$\frac{AB}{BC}$的值(用含n,k的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.给出一种运算:对于函数y=xn,规定y'=nxn-1.例如:若函数y=x4,则有y'=4x3.已知函数y=x3,则方程y'=36的解是(  )
A.x1=x2=0B.x1=2$\sqrt{3}$,x2=-2$\sqrt{3}$C.x1=2,x2=-2D.x1=4,x2=-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简,再求值:4(x-y)-2(x-3y)+1,其中x=1,y=-2.

查看答案和解析>>

同步练习册答案