精英家教网 > 初中数学 > 题目详情
(2013年四川泸州2分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,
则AC的长为【  】
A.cmB.cmC.cm或cmD.cm或cm
C。
根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论::
连接AC,AO,
∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM=AB=×8=4cm,OD=OC=5cm,
当C点位置如图1所示时,

∵OA=5cm,AM=4cm,CD⊥AB,
(cm)。
∴CM=OC+OM=5+3=8(cm)。
(cm)。
当C点位置如图2所示时,同理可得OM=3cm,

∵OC=5cm,∴MC=5﹣3=2cm.
在Rt△AMC中,(cm)。
故选C。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线分别与x、y轴交于点B、C,点A(﹣2,0),P是直线BC上的动点.

(1)求∠ABC的大小;
(2)求点P的坐标,使∠APO=30°;
(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.

(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=3,NP=,求NQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,弦BC=1.点A是圆上一点,且∠BAC=30°,则⊙O的半径是
A.1B.2C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川自贡4分)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是【   】
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.

(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年广东梅州8分)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.

(1)求线段EC的长;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是
A.AD=ABB.∠BOC=2∠DC.∠D+∠BOC=90°D.∠D=∠B

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.

(1)求证:DE是⊙O的切线;
(2)求tan∠ABE的值;
(3)若OA=2,求线段AP的长.

查看答案和解析>>

同步练习册答案