【题目】如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.
(1)图2中,弓臂两端B1,C1的距离为_____cm.
(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为_____cm.
【答案】 30 10﹣10,
【解析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;
(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;
(1)如图2中,连接B1C1交DD1于H.
∵D1A=D1B1=30
∴D1是的圆心,
∵AD1⊥B1C1,
∴B1H=C1H=30×sin60°=15,
∴B1C1=30
∴弓臂两端B1,C1的距离为30
(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.
设半圆的半径为r,则πr=,
∴r=20,
∴AG=GB2=20,GD1=30-20=10,
在Rt△GB2D2中,GD2=
∴D1D2=10-10.
故答案为30,10-10,
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,且∠BAD=80°,则∠DAC的度数是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①垂直于同一直线的两条直线互相平行;②两个无理数的和是无理数;③点一定不在第四象限;④平方根等于本身的数是或;⑤若点的坐标满足,则点落在原点上;⑥如果两个角的角平分线互为反向延长线,则这两个角为对顶角.正确个数是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;
(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;
(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.
(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定两数a、b之间的一种运算,记作(a,b):如果,那么(a,b)=c.
例如:因为,所以(2,8)=3.
(1)根据上述规定,填空:
(5,125)= ,(-2,4)= ,(-2,-8)= ;
(2)小明在研究这种运算时发现一个现象:,他给出了如下的证明:
设,则,即
∴,即,
∴.
请你尝试运用上述这种方法说明下面这个等式成立的理由.
(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中.
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1,B1,C1的坐标;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知、、三点在同一条直线上,平分,平分.
(1)若,求;
(2)若,求;
(3)是否随的度数的变化而变化?如果不变,度数是多少?请你说明理由,如果变化,请说明如何变化.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以是( )
A. ∠1=∠3 B. ∠B+∠BCD=180°
C. ∠2=∠4 D. ∠D+∠BAD=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中, 分别是边上的点,且 , ,点与点关于对称,连接,交于.
(1)连接,则之间的数量关系是 ;
(2)若,求的大小(用的式子表示)
(2)用等式表示线段和之间的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com