精英家教网 > 初中数学 > 题目详情

【题目】如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是

【答案】12
【解析】解:根据图象可知点P在BC上运动时,此时BP不断增大,
由图象可知:点P从B先A运动时,BP的最大值为5,
即BC=5,
由于M是曲线部分的最低点,
∴此时BP最小,
即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于图象的曲线部分是轴对称图形,
∴PA=3,
∴AC=6,
∴△ABC的面积为: ×4×6=12
所以答案是:12
【考点精析】认真审题,首先需要了解函数的图象(函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).

(1)m为何值时,△OAB面积最大?最大值是多少?
(2)如图2,在(1)的条件下,函数 的图象与直线AB相交于C、D两点,若 ,求k的值.
(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,□ABCD 中,AE 平分∠BAD,交BC 于E,DE⊥AE,下列结论:①DE平分∠ADC;②E 是BC 的中点;③AD=2CD;④四边形ADCE 的面积与△ABE的面积比是3:1,其中正确的结论的个数有( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE= S△ACD , 求点E的坐标;

(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.
(1)求证:无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于点A(m,3)和B(3,1).
(1)填空:一次函数的解析式为 , 反比例函数的解析式为
(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算;
(1) ﹣|﹣3|+(﹣4)×2﹣1
(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为

查看答案和解析>>

同步练习册答案