精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠ACB=90°,tan∠B=数学公式,D为AB边上一点,DE⊥CD于D,交直线AC于E,过点A作AF⊥AB交直线DE于F.
(1)如图(1),求证:△AEF∽△BCD;
(2)如图(2),若CD=DF,求数学公式的值;
(3)如图(3),若将题干中的点D的位置改为在BA的延长线上,其他的条件不变,且满足CD=DF,AB=13cm.请直接写出此时AE=______cm.

(1)证明:∵∠ACB=90°,
∴∠1+∠2=90°,
∵∠CDF=90°,
∴∠1+∠CED=90°,
∴∠2=∠CED,
∵∠CED=∠FEA,
∴∠FEA=∠2,
∵∠3+∠4=90°,
∠4+∠F=90°,
∠F=∠3,
∴△AEF∽△BCD;

(2)解:过C点作AB边垂线,垂足为M.
设BM=a,DM=b,则CM=a•tanB=1.5a.
AM=CM•tanB=2.25a,
∵∠DMC+∠FDA=90°,
∠MDC+∠MCD=90°,
∴∠MCD=∠FDA,
∵CD=DF,∠CMD=∠DAF=90°,
∴△CMD≌△DAF,
所以AD=CM=1.5a,
所以AM=AD+MD=1.5a+b=2.25a,
所以b=0.75a,
∴DF=CD=a,
∴AF=a,BD=a+0.75a,
=

=

(3)解:证出△BCD∽△AEF,
∵CD=DF,AB=13cm,
∴AE=
故答案为:
分析:(1)由已知条件证明两三角形对应角相等,可以得出△AEF∽△BCD;
(2)过C点作AB边垂线,垂足为M,设BM=a,DM=b,分别求出AD=CM,AM的长,即可得出的值;
(3)利用△BCD∽△DAF,即可求出此时AE的长.
点评:此题主要考查了相似三角形的性质与判定,正确的应用两角对应相等的三角形相似是中考中一个热点问题,同学们应熟练掌握此定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案