精英家教网 > 初中数学 > 题目详情
(2010•台湾)如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:
(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;
(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.
对于甲、乙两人的作法,下列判断何者正确( )

A.两人都正确
B.两人都错误
C.甲正确,乙错误
D.甲错误,乙正确
【答案】分析:先根据直线CP是AB的中垂线且交AB于P,判断出△ABC是等腰三角形,即AC=BC,再根据线段垂直平分线的性质作出AD=DC=CE=EB.
解答:解:甲错误,乙正确.
证明:甲:虽然CP=AP,
但∠A≠∠ACP,
即∠A≠∠ACD.
乙:∵CP是线段AB的中垂线,
∴△ABC是等腰三角形,即AC=BC,∠A=∠B,
作AC、BC之中垂线分别交AB于D、E,
∴∠A=∠ACD,∠B=∠BCE,
∵∠A=∠B,
∴∠A=∠ACD,∠B=∠BCE,
∵AC=BC,
∴△ACD≌△BCE,
∴AD=EB,
∵AD=DC,EB=CE,
∴AD=DC=EB=CE.
故选D.
点评:本题主要考查线段垂直平分线的性质,还涉及等腰三角形的知识点,不是很难.
练习册系列答案
相关习题

科目:初中数学 来源:2010年台湾省中考数学试卷(一)(解析版) 题型:选择题

(2010•台湾)如图(1),在同一直线,甲自A点开始追赶等速度前进的乙,且图(2)表示两人距离与所经时间的线型关系.若乙的速率为每秒1.5公尺,则经过40秒,甲自A点移动多少公尺( )

A.60
B.61.8
C.67.2
D.69

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(一)(解析版) 题型:选择题

(2010•台湾)如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH的面积为何( )

A.40
B.50
C.60
D.80

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(二)(解析版) 题型:选择题

(2010•台湾)如图所示,数在线的A、B、C、D四点所表示的数分别a、b、20、d.若a、b、20、d为等差数列,且|a-d|=12,则a值( )

A.11
B.12
C.13
D.14

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(二)(解析版) 题型:选择题

(2010•台湾)如图所示是D,E,F,G四点在△ABC边上的位置图.根据图中的符号和数据,求x+y之值( )

A.110
B.120
C.160
D.165

查看答案和解析>>

科目:初中数学 来源:2010年台湾省中考数学试卷(二)(解析版) 题型:选择题

(2010•台湾)如图所示,数轴上在-2和-1之间的长度以小隔线分成八等分,A点在其中一隔,则A点表示的数是( )

A.-1
B.-1
C.-2
D.-2

查看答案和解析>>

同步练习册答案