精英家教网 > 初中数学 > 题目详情
如图1,Rt△ABC两直角边的边长为AC=1,BC=2.
(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)
(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.
精英家教网
分析:(1)作出∠B的角平分线BD,再过X作OX⊥AB,交BD于点O,则O点即为⊙O的圆心;
(2)由于⊙P与△ABC哪两条边相切不能确定,故应分⊙P与Rt△ABC的边AB和BC相切;⊙P与Rt△ABC的边AB和AC相切时;⊙P与Rt△ABC的边BC和AC相切时三种情况进行讨论.
解答:解:(1)如图所示:精英家教网
①以B为圆心,以任意长为半径画圆,分别交BC、AB于点G、H;
②分别以G、H为圆心,以大于
1
2
GH为半径画圆,两圆相交于D,连接BD;
③过X作OX⊥AB,交直线BD于点O,则点O即为⊙O的圆心.

(2)①当⊙P与Rt△ABC的边AB和BC相切时,由角平分线的性质可知,动点P是∠ABC的平分线BM上的点,如图1,在∠ABC的平分线BM上任意确定点P1(不为∠ABC的顶点)
∵OX=BOsin∠ABM,P1Z=BPsin∠ABM,当BP1>BO时,P1Z>OX即P与B的距离越大,⊙P的面积越大,这时,BM与AC的交点P是符合题意的、BP长度最大的点;精英家教网
如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上,
∴以P为圆心、PC为半径作圆,则⊙P与CB相切于C,与边AB相切于E,即这时⊙P是符合题意的圆,这时⊙P的面积就是S的最大值,
∵AC=1,BC=2,∴AB=
5

设PC=x,则PA=AC-PC=1-x
在直角△APE中,PA2=PE2+AE2
∴(1-x)2=x2+(
5
-2)2精英家教网
∴x=2
5
-4;
②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则(2-y)2=y2+(
5
-1)2
∴y=
5
-1
2

③如图4,同理可得,当⊙P与Rt△ABC的边BC和AC相切时,设PF=z,
∵△APF∽△PBE,∴PF:BE=AF:PE,
z
2-z
=
1-z
z
精英家教网
∴z=
2
3

由①、②、③可知,
2
3
5
-1
2
>2
5
-4,
∴z>y>x,
∴⊙P的面积S的最大值为
4
9
π.
点评:本题考查的是切线的性质,解答此题的关键是根据题意画出图形,再利用数形结合及切线的性质进行解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,在Rt△ABC中,∠BAC=90°,AB=6,AM为∠BAC的平分线,CM=2BM.下列结论:
①tan∠MAC=
2
2
;②点M到AB的距离是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2

其中不正确结论的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为
2
π
π
2
π
π
(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,则AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•嘉定区二模)如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,且BC2=CD•CA.
(1)求证:∠A=∠CBD;
(2)当∠A=α,BC=2时,求AD的长(用含α的锐角三角比表示).

查看答案和解析>>

同步练习册答案