精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

 

A.

B.

2

C.

D.

2


A

解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,

∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,

∴AB=2EF,DC=DF+CF=8,

作DH⊥BC于H,

∵AD∥BC,∠B=90°,

∴四边形ABHD为矩形,

∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,

在Rt△DHC中,DH==2

∴EF=DH=


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


 如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=              cm.         第13题图

查看答案和解析>>

科目:初中数学 来源: 题型:


已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为(  )

   A. 7或8          B.6或1O         C.6或7        D.7或10

查看答案和解析>>

科目:初中数学 来源: 题型:


已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:


四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是(  )

 

A.

OA=OC,OB=OD

B.

AD∥BC,AB∥DC

C.

AB=DC,AD=BC

D.

AB∥DC,AD=BC

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;

(2)若CD=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:


某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为  分.

查看答案和解析>>

科目:初中数学 来源: 题型:


在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为(  )

   A.             18 B.             20 C.             24  D.  28

查看答案和解析>>

同步练习册答案