精英家教网 > 初中数学 > 题目详情

(本题10分)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.

1.观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为          

(2)如图2,当a=4,b=2时,四边形ABFD的面积为          

(3)如图3,当a=4,b=3时,四边形ABFD的面积为          

2.探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;

3.综合应用:(5)农民赵大伯有一块正方形的土地(如图),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.(要求尺规作图,保留作图痕迹)

 

 

1.(1)4×4+(1+4)×1÷2-1×5÷2=16;2)4×4+(2+4)×2÷2-2×6÷2=16;

(3)4×4+(3+4)×3÷2-3×7÷2=16

2.(4)无论点P在CD边上的什么位置,四边形ABFD的面积与正方形ABCD的面积相等,与正方形PCEF的边长无关.

证明:连接BD,CF,∵四边形ABCD是正方形,∴∠DBC=45°,

同理∠FCE=45°,∴BD∥CF,∴S△BCD=S△BDF,

∴四边形ABFD的面积与正方形ABCD的面积相等;

 

 

 

 

 

 

 

 

3.(5)如图6,作BC的延长线CN,作∠DCN的角平分线交BE的延长线于点M,则四边形ABMD的面积与正方形ABCD的面积相等,点M即为所求.

 

 

 

 

 

 

 

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4)

    1.(1)求这两个函数的解析式

    2.(2)在同一坐标系内,分别画出这两个函数的图象

3.(3)求出的面积

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题10分)已知,如图,过点作平行于轴的直线,抛物线上的两点的横坐标分别为1和4,直线轴于点,过点分别作直线的垂线,垂足分别为点,连接

1.(1)求点的坐标;

2.(2)求证:

3.(3)点是抛物线对称轴右侧图象上的一动点,过点轴于点,是否存在点使得相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省南通市幸福中学八年级上学期期中考试数学卷 题型:解答题

(本题10分)已知:如图所示,
【小题1】(1)作出△ABC关于y轴对称的△,并写出△三个顶点的坐标.
【小题2】(2) 在x轴上画出点P,使PA+PC最小.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省苏州市高新区九年级上学期期末考试数学卷 题型:解答题

(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线yax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.

【小题1】(1)写出顶点B的坐标 ▲ (用a的代数式表示);
【小题2】(2)求抛物线的解析式:
【小题3】(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省苏州市高新区九年级上学期期末考试数学卷 题型:解答题

(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线yax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.

1.(1)写出顶点B的坐标  ▲  (用a的代数式表示);

2.(2)求抛物线的解析式:

3.(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案