精英家教网 > 初中数学 > 题目详情
(2007•南通)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=,D、E两点分别在AC、BC上,且DE∥AB,CD=.将△CDE绕点C顺时针旋转,得到△CD′E′(如图②,点D′、E′分别与点D、E对应),点E′在AB上,D′E′与AC相交于点M.
(1)求∠ACE′的度数;
(2)求证:四边形ABCD′是梯形;
(3)求△AD′M的面积.

【答案】分析:(1)根据已知条件容易知道△EDC是等腰直角三角形,也容易求出CE,然后在Rt△ACE′解直角三角形就可以求出∠ACE,
(2)根据(1)的结论和已知条件可以证明△D′CA∽△E′CB,再利用相似三角形的性质就可以证明四边形ABCD′是梯形;
(3)AD′M的面积不能直接求出,要采用面积的割补法,首先确定S△AD′M=S△ACF-S△DCF-S△CD′M,然后分别求出
它们的面积,其中求S△C′DM比较复杂,还要利用相似三角形的面积的比等于相似比的平方这个结论,最后才能求出△AD′M的面积.
解答:(1)解:如图1,∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵DE∥AB,
∴∠DEC=∠DCE=45°,∠EDC=90°,
∴DE=CD=2
∴CE=CE′=4.(1分)
如图2,在Rt△ACE′中,∠E′AC=90°,AC=2,CE′=4,
∴cos∠ACE′=
∴∠ACE′=30°.(3分)

(2)证明:如图2,∠D′CE′=∠ACB=45°,∠ACE′=30°,
∴∠D′CA=∠E′CB=15°,

∴△D′CA∽△E′CB.(5分)
∴∠D′AC=∠B=45°,
∴∠ACB=∠D′AC,
∴AD′∥BC.(7分)
∵∠B=45°,∠D′CB=60°,
∴∠ABC与∠D′CB不互补,
∴AB与D′C不平行.
∴四边形ABCD′是梯形.(8分)

(3)解:在图②中,过点C作CF⊥AD′,垂足为F.
∵AD′∥BC,
∴CF⊥BC.
∴∠FCD′=∠ACF-∠ACD′=30°.
在Rt△ACF中,AF=CF=
∴S△ACF=3,
在Rt△D′CF中,CD′=2,∠FCD′=30°,
∴D′F=
∴S△D′CF=
同理,SRt△AE′C=2,SRt△D′E′C=4.(10分)
∵∠AME′=∠D′MC,∠E′AM=∠CD′M,
∴△AME′∽△D′MC..(11分)

①∴S△AE′M=S△CD′M
②∵S△EMC+S△AE′M=S△AE′C=2
③S△E′MC+S△CD′M=S△D′EC=4.
由③-②,得S△C′DM-S△AE′M=4-2
由①,得S△CD′M=8-4
∴S△AD′M=S△ACF-S△DCF-S△CD′M=3-5.
∴△AD′M的面积是-5.(12分)
点评:此题综合性比较强,难度比较大,考查的知识点比较多,有等腰直角三角形的性质、相似三角形的性质与判定、面积的割补法和解直接三角形等.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《四边形》(01)(解析版) 题型:选择题

(2007•南通)如图,在?ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(河上镇中 董勇) (7)(解析版) 题型:填空题

(2007•南通)如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=   

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(瓜沥一中 沈海虹)(解析版) 题型:填空题

(2007•南通)如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=   

查看答案和解析>>

科目:初中数学 来源:2007年江苏省南通市中考数学试卷(解析版) 题型:填空题

(2007•南通)如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=   

查看答案和解析>>

同步练习册答案