精英家教网 > 初中数学 > 题目详情
如图,AB在⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30度.
(1)CD是⊙O的切线吗?说明你的理由;
(2)AC=______,请给出合理的解释.

【答案】分析:(1)连接OC,BC,只要证得∠OCD=90°即可.
(2)由已知可求得∠CAO=∠D,从而得到结论.
解答:(1)解:CD是⊙O的切线,连接OC,BC;
∴∠OCA=∠OAC=30°,
∴∠COB=2∠OAC=60°;
∵OC=OB,
∴△OBC为正三角形,
∴BC=OB=BD,
∴△OCD是直角三角形,∠OCD=90°,
∴OC⊥CD,
∴CD为⊙O的切线;

(2)解:∵∠OCD=90°,∠COB=60°,
∴∠D=90°-∠COB=30°,
∴∠CAO=∠D,
∴AC=CD.
点评:本题考查的是直角三角形的性质及判定定理,解答此题的关键是作出辅助线,构造出直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).
(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
①tan∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.
(1)求点E的坐标;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高(
2
≈1.4,
3
≈1.7
).

查看答案和解析>>

同步练习册答案