精英家教网 > 初中数学 > 题目详情
如图,⊙C经过原点且与两坐标轴分别交于点A(0,2)和点B,D为⊙C在第一象限内的一点,且∠ODB=60°,求⊙C的半径、线段AB的长、B点坐标及圆心C的坐标.
分析:连接AB;由圆周角定理可知,AB必为⊙C的直径;Rt△ABO中,易知OA的长,而∠OAB=∠ODB=60°,通过解直角三角形,即可求得斜边AB的长,也就求得了⊙C的半径;在Rt△ABO中,由勾股定理即可求得OB的长,进而可得到B点的坐标;过C分别作弦OA、OB的垂线,设垂足为E、F;根据垂径定理即可求出OE、OF的长,也就得到了圆心C的坐标.
解答:解:如图,连接AB.
∵∠ODB=∠OAB,∠ODB=60°,
∴∠OAB=60°,
∵∠AOB是直角,
∴AB是⊙C的直径,∠OBA=30°;
∴AB=2OA=4;
∴⊙C的半径为2;
在Rt△OAB中,由勾股定理得:OB2+OA2=AB2
∴OB=2
3

∴B的坐标为:(2
3
,0);
过C点作CE⊥OA于E,CF⊥OB于F,
由垂径定理得:OE=AE=1,OF=BF=
3

∴CE=
3
,CF=1,
∴C的坐标为(
3
,1).
故⊙C的半径为2,线段AB的长,为4,B点坐标为(2
3
,0),圆心C的坐标为(
3
,1).
点评:此题主要考查了圆周角定理、垂径定理、点的坐标意义、勾股定理等知识的综合应用能力,综合性较强,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.⊙C的半径和圆心C的坐标分别是
 
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°,圆心C的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙C经过原点且与两坐标轴分别交于A、B两点,点A的坐标是(0,4),M是圆上一点,∠BMO精英家教网=120°,求⊙C的半径和圆心C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(2
3
,0),解答下列各题:
(1)求线段AB的长;
(2)求⊙C的半径及圆心C的坐标.

查看答案和解析>>

同步练习册答案