精英家教网 > 初中数学 > 题目详情
14、观察下列等式:
第一行     3=4-1
第二行     5=9-4
第三行     7=16-9
第四行     9=25-16
…按照上述规律,第n行的等式为
2n+1=(n+1)2-n2
分析:通过观察可把题目中的式子用含n的形式分别表示出来,从而寻得第n行等式为2n+1=(n+1)2-n2.即等号前面都是奇数,可以表示为2n+1,等号右边表示的是两个相邻数的平方差.
解答:解:第一行1×2+1=22-12
第二行2×2+1=32-22
第三行3×2+1=42-32
第四行4×2+1=52-42

第n行2n+1=(n+1)2-n2
故答案为:2n+1=(n+1)2-n2
点评:通过仔细的观察,分析发现其中的规律,并应用发现的规律解决问题,本题的关键规律为等号前面都是奇数,可以表示为2n+1,等号右边表示的是两个相邻数的平方差.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

1
n(n+1)
=
1
n
-
1
n+1

将以上等式相加得到
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=1-
1
n+1

用上述方法计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
其结果为(  )
A、
50
101
B、
49
101
C、
100
101
D、
99
101

查看答案和解析>>

科目:初中数学 来源: 题型:

2、观察下列等式:2=2=1×2;2+4=6=2×3;2+4+6=12=3×4;2+4+6+8=20=4×5;…
(1)可以猜想,从2开始到第n(n为自然数)个连续偶数的和是
n(n+1)

(2)当n=10时,从2开始到第10个连续偶数的和是
110

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…用自然数n将上面式子的一般规律表示为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式,找出规律然后空格处填上具体的数字.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,1+3+5+7+9+11=
 

(1)第5个式子等号右边应填的数是
 

(2)根据规律填空1+3+5+7+9+…+99=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1=12
1+3=22
1+3+5=32
1+3+5+7=42

则1+3+5+…+15=
8
8
2
并请你将想到的规律用含有n(n是正整数)的等式来表示就是:
1+3+5+7+…+(2n-1)=n2
1+3+5+7+…+(2n-1)=n2

查看答案和解析>>

同步练习册答案