精英家教网 > 初中数学 > 题目详情
(1998•金华)如图,已知:AD是Rt△ABC斜边BC上的高线,DE是Rt△ADC斜边AC上的高线,如果DC:AD=1:2,S△ADE=a,那么S△ABC等于( )

A.4a
B.9a
C.16a
D.a
【答案】分析:先证△ABD∽△CAD,得到,再证△ADE∽△BAC,可得S△ABC:S△ADE==,即S△ABC=
解答:解:设DC=x,AD=2x
∵∠ABD+∠ACD=90°,∠ACD+∠CAD=90°
∴∠ABD=∠CAD
又∵∠ADB=∠CDA
∴△ABD∽△CAD

∴BD=4x
∴BC=5x
同理可证出△ADE∽△BAC
∴S△ABC:S△ADE==
∴S△ABC=
故选D.
点评:此题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源:1998年全国中考数学试题汇编《锐角三角函数》(01)(解析版) 题型:选择题

(1998•金华)如图,在Rt△ABC中,∠C=90°,c为斜边,a、b为∠A,∠B所对的直角边,那么( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:解答题

(1998•金华)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,E,D分别是AB,BC的中点,过E,D作⊙O,且与AB相切于E,⊙O与BC的延长线交于F,求⊙O的半径OE的长.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:解答题

(1998•金华)如图,已知:P为⊙O外一点,过P作⊙O的两条割线,分别交⊙O于A、B和C,D,且AB是⊙O的直径,弧AC=弧DC,连接BD,AC,OC.
(1)求证:OC∥BD;
(2)如果PA=AO=4,延长AC与BD的延长线交于E,求DE的长.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:解答题

(1998•金华)如图,已知:在等腰梯形ABCD中,AB∥CD,AC⊥BC,DG⊥AC,过B作EB⊥AB,交AC的延长线于E.
(1)求证:AD2=AC•CE;
(2)当BE=CD时,求证:△DCG≌△EBC.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:填空题

(1998•金华)如图,△ABC中,DE∥BC,AD=1,DB=2,AE=2,那么EC=   

查看答案和解析>>

同步练习册答案